Биология для всех
  • Главная
  • Клетка
  • Дифференциальное уравнение бесселя. Функции бесселя с целым положительным значком Нули функции бесселя первого порядка

Дифференциальное уравнение бесселя. Функции бесселя с целым положительным значком Нули функции бесселя первого порядка

В теории погрешностей точность измерений характеризуется средней квадратической погрешностью, которая была введена знаменитым немецким математиком и геодезистом К. Ф. Гауссом (1777–1855 гг.) и обозначается через m:

______________________ ______

m = ± √ (Δ 1 2 + Δ 2 2 + .. + Δ n 2) / n = ± √ [Δ 2 ] / n, (4.5)

где Δ 1 , Δ 2 , …, Δ n – случайные погрешности;

n – число измерений.

Средняя квадратическая погрешность является надежным критерием для оценки точности измерений. Она даже при небольшом числе измерений достаточно устойчива и хорошо отражает наличие крупных случайных ошибок, которые по существу и определяют качество измерений.

Формула (4.5) применена для вычисления средней квадратической погрешности, когда известно истинное значение измеряемой величины. Эти случаи в практике весьма редки. Как правило, истинное значение измеряемой величины неизвестно, но из измерений можно получить наиболее надежный результат – арифметическую середину. Получим формулу для вычисления средней квадратической погрешности при помощи уклонения отдельных результатов от арифметической середины по так называемым вероятнейшим погрешностям V.

Пусть l 1 , l 2 , …, l n – результаты равноточных измерений одной и той же величины, истинное значение которой Х, а арифметическая середина – L. Тогда можно вычислить n случайных или истинных погрешностей

Δ i = l i – X (4.6)

и n вероятнейших погрешностей

V i = l i – L. (4.7)

Сумма n равенству (4.7)

[V] = [l] – nL. (4.8)

Но, согласно равенству (4.4) nL = [l], поэтому

т. е. сумма вероятнейших погрешностей всегда должна быть равна нулю.

Вычитая из равенства (4.6) равенство (4.7), получим

Δ i – V i = L – X. (4.10)

В правой части равенству (4.10) мы имеем случайную погрешность арифметической середины. Обозначим ее через ε. Тогда

Δi = V i + ε. (4.11)

Возведем в квадрат равенство (4.11), возьмем их сумму и разделим ее на n:

[Δ 2 ] / n = / n + nε 2 / n + 2ε[V] / n. (4.12)

Левая часть этого равенства есть не что иное как m 2 . Последнее слагаемое правой части ввиду равенства (4.9) равно нулю.

m 2 = / n + ε 2 . (4.13)

Случайную погрешность ε заменим ее средним значением, т. е. средней квадратической погрешностью арифметической середины. Ниже будет доказано, что средняя квадратическая погрешность арифметической середины

М 2 = ε 2 = m 2 / n. (4.14)

m 2 – m 2 / n = / n или m 2 (n – 1) / n = / n,

откуда ___________

m 2 = / (n – 1), или m = √ / (n – 1). (4.15)


Формула (4.15) называется формулой Бесселя и имеет большое практическое значение. Она позволяет вычислять среднюю квадратическую погрешность по вероятнейшим уклонениям результатов измерений от арифметической средины.

Кроме средней квадратической погрешности различают еще среднюю, вероятную и относительную погрешности.

Средней погрешностью (Θ) называют среднее арифметическое из абсолютных значений случайных погрешностей т. е.

Θ = (|Δ 1 | + |Δ 2 | + … + |Δ n |) / n = [|Δ|] / n. (4.16)

В теории погрешности доказывается, что при n → ∞ Θ = 0,8 m , или m = 1,25Θ.

Иногда в прикладных вопросах пользуются вероятной погрешностью r. Вероятной погрешностью называют такое значение случайной погрешности в одном ряду равноточных измерений, по отношению к которой одинаково возможна погрешность как больше, так и меньше этого значения, по абсолютной величине. Для нахождения r все погрешности данного ряда располагают в порядке возрастания по абсолютной величине и выбирают то значение, которое занимает среднее положение, т. е. погрешностей меньше его столько же, сколько и больше. Вероятная погрешность связана со средней квадратической погрешностью соотношением r = 2/3 m = 0,67 m или m = 1,5 r.

Как видно, m > Θ и m > r, что показывает, что средняя квадратическая погрешность лучше характеризует точность измерений, чем средняя и вероятная погрешности.

Оценку точности таких измеренных величин, как линии, площади и объемы часто производят с помощью относительной погрешности . Относительной погрешностью называют отношение абсолютной погрешности к значению измеренной величины. Относительная погрешность записывается в виде дроби, в числителе которой стоит единица, а в знаменателе – число, показывающее какую долю измеряемой величины должна составлять допустимая погрешность. Например, длина стороны D = 150 м измерена с абсолютной погрешностью m d = 0,05 м. Тогда относительная погрешность результата измерения составит m d / D = 0,05 м / 150 м = 1 / 3000.

Величина 1 / 3000 означает, что на 3000 м расстояния может быть допущена погрешность в 1 м. Чем больше знаменатель относительной погрешности, тем выше точность измерений. Точность всех линейных измерений в геодезии всегда задается относительной погрешностью, которая приводится в соответствующих инструкциях и наставлениях по производству данного вида геодезических работ.

Дифференциальным уравнением Бесселя называется уравнение вида где и - действительное число. Это уравнение имеет особую точку z = 0 (коэффициент при старшей производной в (7) обращается в нуль при х = 0). Сравнивая (5) и (7), заключаем, что для уравнения Бесселя так что х = 0 является нулем второго порядка (т = 2) функции Ро(х), нулем первого порядка функции р\(х) и не является нулем функции pi(x) (если v Ф 0). Поэтому в силу теоремы 17 существует решение уравнения (7) в виде обобщенного степенного ряда где а - характеристический показатель, подлежащий определению. Перепишем выражение (8) в виде Уравнение Функции Бесселя Дифференциальное уравнение Г-функция Эйлера и ее свойства Рекуррентные формулы для функций Бесселя полуцелого индекса Нули бесселевых функций Ортогональность и норма Функции Неймана (Вебера) и найдем производные: Подставим эти выражения в уравнение (7), и приравнивая нулю коэффициенты при х в степени получим систему уравнений то из первого уравнения (9) следует, что, или Теперь из второго уравнения (9) будем иметь Рассмотрим сначала случай. Перепишем уравнение системы (9) в виде откуда получаем рекуррентную формулу для определения ак через ак-2".) Учитывая, что получаем отсюда а3 = 0 и вообще С другой стороны, каждый четный коэффициент может быть выражен через предыдущий по формуле Последовательное применение этой формулы позволяет найти выражение а2т через ао: Подставим найденные значения коэффициентов в формулу (8), (10) Нетрудно проверить, что ряд в правой части (10) сходится на полуоси х > 0 и определяет там функцию (я) - частное решение уравнения Бесселя. Рассмотрим теперь второй случай, когда а = -и. Если v не равно положительному целому числу, то можно написать второе частное решение, которое получается из выражения (10) заменой v на -v (в уравнение (7) v входит четным образом), («О (Если и равно целому положительному числу, то решение (101) теряет силу, так как начиная с некоторого числа один из множителей в знаменателе членов разложения (1(У) будет равен нулю.) Ряд в правой части (10") также сходится при всех значениях х > 0. Решения yi (ж) и у2(х) линейно независимы. Действительно, их отношение не является постоянным. 12.2. Г-функция Эйлера и ее свойства Для дальнейшего нам понадобятся некоторые свойства Г -функции Эйлера. Она определяется следующим образом: Интегрированием по частям получаем основное функциональное уравнение для Г-функции: Так как и вообще Можно показать еще, что С помощью функционального уравнения (11) можно определить гамма-функцию для отрицательных значений аргумента. Записав уравнение (11) в виде Г(р) = , замечаем, что для малых р выполняется соотношение Г(р) ~ £. Аналогично, если m - положительное целое число, то для значений р, близких к числу -ш, имеем Можно показать, что Г(р) Ф 0 при всяком р, поэтому функция щ будет непрерывной для всех значений р, если положить Возвратимся к решению уравнения Бесселя (7). Коэффициент oq до сих пор оставался произвольным. Если v Ф -п, где п > 0 - целое число, то, полагая найдем Подставляя это выражение для коэффициентов в (9), получаем Ряд (12) определяет функцию которая является решением уравнения Бесселя и называется функцией Бесселя первого рода и -го порядка. Ряд отвечает случаю а = -и (и - нецелое) и определяет второе решение уравнения (7), линейно независимое с функцией Итак, если v не равно целому числу (, то функции Jv(x) и J-v(x) образуют фундаментальную систему решений уравнения Бесселя (7) и его общее решение имеет в этом случае вид При v целом выполняется линейная зависимость В самом деле, имеем Первые п членов ряда исчезают, так как а = 1. Введя обозначение т = к + п, находим Выпишем ряды для функций Бесселя первого рода нулевого (п = 0) и первого (n = 1) порядков: Функции Jb(x) и J\ (ж) (рис. 4) часто встречаются в приложениях, и для них имеются подробные таблицы. 12.4. Рекуррентные формулы для функций Бесселя Используя формулу непосредственно проверкой убеждаемся в том, что Точно таким же вычислением находим Раскрывая в левых частях формул (15) и (16) производные произведений, получаем соответственно равенства Складывая и вычитая (17) и (18), получим две важные рекуррентные формулы: Формула (19) показывает, что производные функций Бесселя выражаются через бесселевы же функции. Из формулы (20) вытекает, что, зная Jv{x) и Jv-\(x), можно найти (/1/+\(х). В частности, все функции Бесселя целых номеров выражаются через две функции Jo (ж) и J\{x)- Здесь оказывается полезным соотношение (14). При1/ = 1 из (20) находим, например, 12.5. Функции Бесселя полуцелого индекса Рассмотрим специальный класс бесселевых функций с индексом, равным половине нечетного целого числа. Этот класс встречается в приложениях и замечателен тем, что в рассматриваемом случае бесселевы функции могут быть выражены через элементарные. Так, при и = I путем несложных преобразований находим Аналогично, при получаем Обе эти формулы можно записать в виде Уравнение Функции Бесселя Дифференциальное уравнение Г-функция Эйлера и ее свойства Рекуррентные формулы для функций Бесселя полуцелого индекса Нули бесселевых функций Ортогональность и норма Функции Неймана (Вебера) 12.6. Нули бесселевых функций При решении многих прикладных вопросов необходимо иметь представление о распределении нулей функций Бесселя. Нули функций и J-x^x) совпадают с нулями sin х и cos х соответственно. Можно показать, что для больших значений х имеет место асимптотическое представление1* (сравните справедливое как для целых, так и для дробных v. Формула (22) показывает, как ведет себя функция Бесселя при возрастании аргумента. Это колеблющаяся функция, бесчисленное множество раз обращающаяся в нуль, причем амплитуда колебаний стремится к нулю при х -» +оо. Распределение нулей функции Бесселя с целым положительным индексом, т. е. корней уравнения устанавливается следующей теоремой. Теорема 18. Функция не имеет комплексных нулей, но имеет бесконечное множество действительных нулей, расположенных симметрично относительно точки х = 0, которая в случае п = 1,2,... принадлежит к их числу. Все нули функции простые за исключением точки х = 0, которая при п = 1,2,... является нулем кратности п соответственно. 12.7. Ортогональность и норма функций Бесселя Ортогональность функций Бесселя Рассмотрим дифференциальное уравнение где А - некоторый числовой параметр, отличный от нуля. Нетрудно проверить, что уравнению (23) удовлетворяет функция Бесселя Jv(\x). Перепишем уравнение (23) в виде и обозначим - какие-либо значения параметра А. Тогда будем иметь тождества Умножая первое тождество на), второе -) и вычитая одно из другого, получим Умножив все члены последнего тождества на ж, замечаем, что его можно записать в виде Интегрируя последнее тождество по ж в пределах от 0 до 1, будем иметь равенства (25) следует, что если Ai, Аг есть нули функции то левая часть (25), а значит, и правая, равны нулю, так что Это означает, согласно определению, что функции ортогональны с весом р(х) = х на отрезке с весом р 3. Пусть А|, Аг являются корнями уравнения где h - некоторое фиксированное число. Уравнение (28) встречается в математической физике и при v > -1 имеет бесконечное множество положительных корней, но не имеет комплексных корней (исключая случай, когда есть два чисто мнимых корня). Записав левую часть равенства (25) в виде убеждаемся в ортогональности бесселевых функций по нулям линейной комбинации хJu(x) - hji,(x) = 0 функции Бесселя и ее производной: где - корни уравнения (28). Норма функций Бесселя Величина 12.8. Функции Неймана (Вебера) Всякое нетривиальное решение уравнения Бесселя называют цилиндрической функцией. При v нецелом функции образуют функциональную систему решений уравнения Бесселя (7). При и = п - целом имеет место линейная зависимость Чтобы к решению Jr\x) подыскать такое, которое ему не пропорционально, поступаем так: при нецелом и составляем функцию Она является линейной комбинацией решений линейного однородного уравнения (7) и, следовательно, сама есть решение этого уравнения. Переходя в (30) к пределу при v -» п и пользуясь правилом Лопиталя, будем иметь Характерное свойство функций J/y\(х) (функций Бесселя 2-го рода) - наличие особенности в начале координат (рис. 5) Найденное решение уравнения Бес- селя (7) при v = п вместе с Jn(x) составляет фундаментальную систему решений уравнения Уравнение Функции Бесселя Дифференциальное уравнение Г-функция Эйлера и ее свойства Рекуррентные формулы для функций Бесселя полуцелого индекса Нули бесселевых функций Ортогональность и норма Функции Неймана (Вебера) Функцию.Л£(ж) называют также функцией Неймана или функцией Вебера. При достаточно больших х Таким образом, на больших расстояниях от начала координат цилиндрические функции 1 -го и 2-го рода относятся друг к другу как косинус и синус, но затухают с ростом х благодаря множителю Эти функции удобны для представления стоячих цилиндрических волн. По аналогии с показательными функциями (формулы Эйлера) можно построить линейную комбинацию функций Jv(x) и дающую функции, связанные с бе- гущими волнами. Так мы приходим к бесселевым функциям 3-го рода или функциям Ханкеля, определяемым соотношениями Упражнения Найдите общее решение уравнений: Найдите решение задачи Коши: Проинтегрируйте уравнения, найдя, где указано, частные решения: Найдите общие решения следующих линейных неоднородных дифференциальных уравне- Виды частных решений неоднородных линейных уравнений с постоянными коэффициентами для различных правых частей Правая часть*) дифференциальных уравнений Корни характеристического уравнения Виды частного решения 1. Число 0 не является корнем характеристического уравнения Число 0 - корень характеристического уравнения кратности г 2. Число а не является корнем характеристического уравнения Число а является корнем характеристического уравнения кратности г 3. Числа ±»"/3 не являются корнями характеристического уравнения Числа ±«/9 являются корнями характеристического уравнения кратности г 4. Числа а ± i/З не являются корнями характеристического уравнения Числа a ± i/З являются корнями характеристического уравнения кратности г *) Первые три вида правых частей являются частными случаями четвертого. Укажите вид частных решений следующих линейных неоднородных уравнений: Методом вариации постоянных проинтегрируйте следующие уравнения: Проинтегрируйте следующие уравнения Эйлера: Ответы

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

СТЕРЛИТАМАКСКИЙ ФИЛИАЛ

ГОСУДАРСТВЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«БАШКИРСКИЙ ГОСУДАРСВТЕННЫЙ УНИВЕРСИТЕТ»

Экономический факультет

Кафедра математики и информатики

Курсовая работа

на тему:

Функции Бесселя

Выполнил студент 2 курса

группы ПМиИ-08

Александрова А.Ю._______

«___»____________2010г.

Научный руководитель

к.ф.-м.н., ст. пр.

Сидоренко О.Г._______

«___»____________2010г.

Стерлитамак 2010


Введение

1 Функции Бесселя с целым положительным значком

2 Функции Бесселя с произвольным значком

3 Общее представление цилиндрических функций. Функции Бесселя второго рода

4 Разложение в ряд функции Бесселя второго рода с целым значком

5 Функции Бесселя третьего рода

6 Функции Бесселя мнимого аргумента

7 Цилиндрические функции с индексом, равным половине нечетного целого числа

8 Асимптотические представления цилиндрических функций для больших значений аргумента

9 Нули цилиндрических функций

Заключение

Список литературы

Введение

Цилиндрическими функциями называются решения линейного дифференциального уравнения второго порядка

, (1) – комплексное переменное, – параметр, который может принимать любые вещественные или комплексные значения.

Термин «цилиндрические функции» обязан своим происхождением тому обстоятельству, что уравнение (1) встречается при рассмотрении краевых задач теории потенциала для цилиндрической области.

Специальные классы цилиндрических функций известны в литературе под названием функций Бесселя, и иногда это наименование присваивается всему классу цилиндрических функций.

Хорошо разработанная теория рассматриваемых функций, наличие подробных таблиц и широкая область применений служат достаточным основанием для того, чтобы отнести цилиндрические функции к числу наиболее важных специальных функций.

Уравнение Бесселя возникает во время нахождения решений уравнения Лапласа и уравнения Гельмгольца в цилиндрических и сферических координатах. Поэтому функции Бесселя применяются при решении многих задач о распространении волн, статических потенциалах и т. п., например:

1) электромагнитные волны в цилиндрическом волноводе;

2) теплопроводность в цилиндрических объектах;

3) формы колебания тонкой круглой мембраны;

4) скорость частиц в цилиндре, заполненном жидкостью и вращающемся вокруг своей оси.

Функции Бесселя применяются и в решении других задач, например, при обработке сигналов.

Цилиндрические функции Бесселя являются самыми распространенными из всех специальных функций. Они имеют многочисленные приложения во всех естественных и технических науках (особенно в астрономии, механике и физике). В ряде задач математической физики встречаются цилиндрические функции, в которых аргумент или индекс (иногда и тот и другой) принимают комплексные значения. Для численного решения таких задач необходимо разработать алгоритмы, позволяющие вычислять функции Бесселя с высокой точностью.

Цель курсовой работы: изучение функций Бесселя и применение их свойств в решении дифференциальных уравнений.

Задачи:

1) Изучить уравнение Бесселя и модифицированное уравнение Бесселя.

2) Рассмотреть основные свойства функций Бесселя, асимптотические представления.

3) Решить дифференциальное уравнение с использованием функции Бесселя.

1 Функции Бесселя с целым положительным значком

Для рассмотрения многих проблем, связанных с применением цилиндрических функций, достаточно ограничиться изучением специального класса этих функций, который соответствует случаю, когда параметр

в уравнении (1) равен нулю или целому положительному числу.

Исследование данного класса носит более элементарный характер, чем теория, относящаяся к произвольным значениям

, и может служить хорошим введением в эту общую теорию.

Покажем, что одним из решений уравнения

0, 1, 2, …, (1.1)

является функция Бесселя первого рода порядка

, которая для любых значений определяется как сумма ряда (1.2)

При помощи признака Даламбера легко убедиться, что рассматриваемый ряд сходится на всей плоскости комплексного переменного и, следовательно, представляет целую функцию от

.

Если обозначить левую часть уравнения (1.1) через

и ввести сокращенную запись коэффициентов ряда (1.2), положив

то в результате подстановки получим

откуда следует

так как выражение в фигурных скобках равно нулю. Таким образом, функция удовлетворяет уравнению (1.1), т. е. представляет собой цилиндрическую функцию.

Простейшими функциями рассматриваемого класса являются функции Бесселя порядка нуль и единица:

(1.3)

Покажем, что функции Бесселя других порядков могут быть выражены через эти две функции. Для доказательства предположим, что а - целое положительное число, умножим ряд (1.2) на

и продифференцируем по . Мы получим тогда (1.4)

Аналогичным образом, умножая ряд на

находим (1.5)

Выполнив дифференцирование в равенствах (1.4 – 1.1) и разделив на множитель

, приходим к формулам: (1.6)

откуда непосредственно следует:

(1.7) (1.8)

Полученные формулы известны под названием рекуррентных соотношений для функций Бесселя.

Для того чтобы перейти к решению задачи о колебаниях круглой мембраны, мы предварительно должны познакомиться с функциями Бесселя. Функции Бесселя являются решениями линейного дифференциального уравнения второго порядка с переменными коэффициентами

Это уравнение называется уравнением Бесселя. И само уравнение, и его решения встречаются не только в задаче о колебаниях круглой мембраны, по и в очень большом числе других задач.

Параметр k, входящий в уравнение (10.1), может, вообще говоря, принимать любые положительные значения. Решения уравнения при заданном k называются бесселевыми функциями порядка k (иногда их называют цилиндрическими функциями). Мы рассмотрим детально лишь наиболее простые случаи, когда и так как в дальнейшем изложении нам встретятся только бесселевы функции нулевого и первого порядков.

Для общего изучения бесселевых функций мы отсылаем читателя к специальным руководствам (см., например, }

Лучшие статьи по теме