Биология для всех
  • Главная
  • Клетка
  • Решение нелинейных дифференциальных уравнений второго порядка. Дифференциальные уравнения

Решение нелинейных дифференциальных уравнений второго порядка. Дифференциальные уравнения

Мы переходим к рассмотрению уравнений с частными производными первого порядка в общем случае. Как и для рассмотренных выше линейных уравнений, мы сначала будем предполагать, что имеются лишь две независимые переменные. Уравнение с частными производными первого порядка для функции от двух независимых переменных имеет вид

Выясним прежде всего геометрический смысл написанного уравнения. В любой фиксированной точке уравнение (59) представляет собою соотношение между т. е. соотношение между направляющими косинусами нормали к поверхности. Удовлетворяющие этому соотношению нормали образуют некоторую коническую поверхность с вершиной Плоскости, проходящие через точку и перпендикулярные к образующим этого конуса, представляют собою возможные положения

касательной плоскости в фиксированной точке к искомым интегральным поверхностям. Это семейство плоскостей, так же как и семейство образующих конуса нормалей, будет зависеть от одного параметра. Огибающая этого семейства плоскостей будет представлять собою новый конус, который мы назовем конусом Т. Уравнение (59) эквивалентно, таким образом, заданию в каждой точке пространства конуса T, а искомая интегральная поверхность уравнения (59) должна обладать тем свойством, что в каждой ее точке касательная плоскость должна касаться конуса T, соответствующего этой точке.

Составим уравнения образующих конуса Т в заданной точке Пусть и q - функции некоторого параметра а, удовлетворяющие уравнению (59) в фиксированной точке Конус Т является огибающей семейства плоскостей:

Дифференцируя по параметру а, получаем добавочное уравнение

Дифференцируя по а соотношение (59), мы получим

В дальнейшем мы будем считать, что при рассматриваемых значениях переменных одновременно в нуль не обращаются, т. е. Исключением будет лишь случай особых решений уравнения (59). Считая, что - и не могут быть оба одновременно равны нулю, мы из однородных уравнений (61) и (62) получаем

и, наконец, уравнение (60) дает нам окончательно уравнение образующих конуса:

Чтобы получить различные образующие конуса Т, мы должны в знаменатели подставлять различные значения к q, удовлетворяющие соотношению (59) в фиксированной точке .

В случае линейного уравнения (2) мы имели в каждой точке одно определенное направление, и касательная плоскость к искомым интегральным поверхностям должна была содержать это направление В данном случае мы имеем в каждой точке вместо одного определенного направления конус , и касательная плоскость к искомым интегральным поверхностям должна касаться этого конуса Мы не можем, таким образом, для нелинейного уравнения (59) строить непосредственно характеристические кривые так, как это мы делали для линейного уравнения (2), имея определенное поле направлений. В данном случае вместо поля направлений мы имеем поле конусов Т. Но мы покажем сейчас, что, имея интегральную поверхность уравнения (59), мы можем покрыть ее линиями, которые вполне аналогичны характеристическим линиям линейного уравнения (2). Действительно, в каждой точке интегральной поверхности касательная плоскость должна касаться конуса T, соответствующего этой точке, и, тем самым, должна содержать одну из образующих этого конуса, вдоль которой она и касается конуса Эти образующие конусов Т в различных точках поверхности создают на интегральной поверхности некоторое поле направлений и, тем самым, интегрируя соответствующее этому полю направлений дифференциальное уравнение первого порядка, мы покрываем нашу поверхность семейством кривых T, зависящим от одного параметра. Направляющие косинусы упомянутого поля направлений должны быть пропорциональны знаменателям уравнения (64), где и q определяются непосредственно из уравнения рассматриваемой интегральной поверхности . Таким образом, вдоль упомянутых линий, покрывающих заданную интегральную поверхность, должно выполняться соотношение

Чтобы найти упомянутые линии на заданной интегральной поверхности, достаточно проинтегрировать уравнение первого порядка

причем знаменатели написанных дробей содержат только переменные х и у, поскольку функция а и ее частные производные и q на заданной поверхности являются известными функциями х и у. Интегрируя уравнение (67) и пользуясь уравнением поверхности мы и получим упомянутые выше линии

Правые части уравнений (66) имеют определенный смысл только при определенном выборе интегральной поверхности и . Знание интегральной поверхности дает нам и q как функции от . Мы дополним сейчас систему уравнений (66) еще двумя уравнениями, содержащими дифференциалы так, чтобы получилась система дифференциальных уравнений, не зависящая от выбора интегральной поверхности уравнения (59). Обозначим через и t вторые производные функции и:

а через обозначим производные от левой части уравнения (59) по :

Дифференцируя левую часть уравнения (55) по х и у полным образом, мы получим

С другой стороны, мы имеем, очевидно,

Из написанных уравнений непосредственно вытекает, что

и, следовательно, мы можем добавить к уравнениям (66) еще два последних уравнения, и, таким образом, получим следующую систему пяти дифференциальных уравнений с пятью функциями вспомогательного параметра

Книга является введением в аналитическую теорию нелинейных дифференциальных уравнений и посвящена анализу нелинейных математических моделей и динамических систем на предмет их точного решения (интегрируемости).
Предназначена для студентов, аспирантов и научных сотрудников, интересующихся нелинейными математическими моделями, теорией солитонов, методами построения точных решений нелинейных дифференциальных уравнений, теорией уравнений Пенлеве и их высших аналогов.

Уравнение Кортевега - де Вриза для описания волн на воде.
Явление распространения волн на поверхности воды издавна привлекало к себе внимание исследователей. Это пример волн, который каждый мог наблюдать еще в детстве и который обычно демонстрируется в рамках школьного курса физики. Однако, это довольно сложный тип волн. По выражению Ричарда Фейнмана «более неудачного примера для демонстрации волн придумать трудно, ибо эти волны нисколько не похожи ни на звук, ни на свет; здесь собрались все трудности, которые могут быть в волнах» .

Если рассмотреть бассейн, наполненный водой, и на его поверхности создать некоторое возмущение, то по поверхности воды начнут распространяться волны. Возникновение их объясняется тем, что частицы жидкости, которые находятся вблизи впадины, при создании возмущения будут стремиться заполнить впадину, находясь под действием силы тяжести. Развитие этого явления с течением времени и приведет к распространению волны на воде. Частицы жидкости в такой волне двигаются не вверх-вниз, а приблизительно по окружностям, поэтому волны на воде не являются ни продольными, ни поперечными. Они как бы являются смесью тех и других. С глубиной, радиусы окружностей, по которым двигаются частицы жидкости, уменьшаются до тех пор, пока они не станут равными нулю .

Если анализировать скорость распространения волны на воде, то оказывается, что она зависит от ее амплитуды. Скорость длинных волн пропорциональна корню квадратному из ускорения свободного падения умноженному на сумму амплитуды волны и глубины бассейна. Причиной возникновения таких волн является сила тяжести.

СОДЕРЖАНИЕ
Предисловие 9
Глава 1. НЕЛИНЕЙНЫЕ МАТЕМАТИЧЕСКИЕ МОДЕЛИ 13
1.1 Уравнение Кортевега - де Вриза для описания волн на воде 13
1.2 Простейшие решения уравнения Кортевега - де Вриза 23
1.3 Модель для описания возмущений в цепочке одинаковых масс 26
1.4 Простейшие решения модифицированного уравнения Кортевега - де Вриза 32
1.5 Фазовая и групповая скорости волн 35
1.6 Нелинейное уравнение Шредингера для огибающей волнового пакета 39
1.7 Уединенные волны, описываемые нелинейным уравнением Шредингера и групповой солитон 42
1.8 Уравнение sin-Гордона для описания дислокаций в твердом теле 44
1.9 Простейшие решения уравнения sin-Гордона и топологический солитон 48
1.10 Нелинейное уравнение переноса и уравнение Бюргерса 51
1.11 Модель Хенона - Хейлеса 57
1.12 Система Лоренца 60
1.13 Задачи и упражнения к главе 1 68
Глава 2. АНАЛИТИЧЕСКИЕ СВОЙСТВА ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 71
2.1 Классификация особых точек функций комплексной переменной 71
2.2 Неподвижные и подвижные особые точки 74
2.3 Уравнения, не имеющие решений с критическими подвижными особыми точками 76
2.4 Задача Ковалевской о волчке 82
2.5 Определение свойства Пенлеве и уравнения Пенлеве 85
2.6 Второе уравнение Пенлеве для описания электрического поля в полупроводниковом диоде 87
2.7 Алгоритм Ковалевской анализа дифференциальных уравнений 91
2.8 Локальные представления решений уравнений типа Пенлеве 96
2.9 Метод Пенлеве для анализа дифференциальных уравнений 100
2.10 Трансцендентная зависимость решений первого уравнения Пенлеве 106
2.11 Неприводимость уравнений Пенлеве 111
2.12 Преобразования Бэклунда для решений второго уравнения Пенлеве 113
2.13 Рациональные и специальные решения второго уравнения Пенлеве 114
2.14 Дискретные уравнения Пенлеве 116
2.15 Асимптотические решения первого и второго уравнений Пенлеве 118
2.16 Линейные представления уравнений Пенлеве 120
2.17 Алгоритм Конта - Форди - Пикеринга для проверки уравнений на свойство Пенлеве 122
2.18 Примеры анализа уравнений методом возмущений Пенлеве 125
2.19 Тест Пенлеве для системы уравнений Хенона-Хейлеса 128
2.20 Точно решаемые случаи системы Лоренца 131
2.21 Задачи и упражнения к главе 2 135
Глава 3. СВОЙСТВА НЕЛИНЕЙНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ 138
3.1 Интегрируемые системы 138
3.2 Преобразование Коула - Хопфа для уравнения Бюргерса 141
3.3 Преобразование Миуры и пара Лакса для уравнения Корте-вега - де Вриза 144
3.4 Законы сохранения для уравнения Кортевега - де Вриза 146
3.5 Отображения и преобразования Бэклунда 149
3.6 Преобразования Бэклунда для уравнения sin-Гордона 151
3.7 Преобразования Бэклунда для уравнения Кортевега - де Вриза 153
3.8 Семейство уравнений Кортевега - де Вриза 155
3.9 Семейство уравнений АКНС 157
3.10 Тест Абловица - Рамани - Сигура для нелинейных уравнений в частных производных 160
3.11 Метод Вайса - Табора - Карневейля для анализа нелинейных уравнений 163
3.12 Пенлеве-анализ уравнения Бюргерса методом ВТК 165
3.13 Анализ уравнения Кортевега - де Вриза 168
3.14 Построение пары Лакса для уравнения Кортевега - де Вриза методом ВТК 169
3.15 Анализ модифицированного уравнения Кортевега - де Вриза 171
3.16 Усеченные разложения, как отображения решений нелинейных уравнений 172
3.17 Инвариантный пенлеве-анализ 174
3.18 Применение инвариантного пенлеве-анализа для нахождения пар Лакса 176
3.19 Соотношения между основными точно решаемыми нелинейными уравнениями 179
3.20 Семейство уравнений Бюргерса 187
3.21 Задачи и упражнения к главе 3 189
Глава 4. ТОЧНЫЕ РЕШЕНИЯ НЕЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 193
4.1 Применение усеченных разложений для построения частных решений неинтегрируемых уравнений 193
4.2 Точные решения уравнения Бюргерса - Хаксли 197
4.3 Частные решения уравнения Бюргерса - Кортевега - де Вриза 205
4.4 Уединенные волны, описываемые уравнением Курамото - Сивашинского 208
4.5 Кноидальные волны, описываемые уравнением Курамото - Сивашинского 215
4.6 Частные решения простейшего нелинейного волнового уравнения пятого порядка 217
4.7 Точные решения нелинейного уравнения пятого порядка для описания волн на воде 220
4.8 Решения уравнения Кортевега - де Вриза пятого порядка в переменных бегущей волны 230
4.9 Точные решения модели Хенона - Хейлеса 235
4.10 Метод нахождения рациональных решений некоторых точно решаемых нелинейных уравнений 237
4.11 Задачи и упражнения к главе 4 241
Глава 5. ВЫСШИЕ АНАЛОГИ УРАВНЕНИЙ ПЕНЛЕВЕ И ИХ СВОЙСТВА 244
5.1 Анализ уравнений четвертого порядка на свойство Пенлеве 244
5.2 Уравнения четвертого порядка, прошедшие тест Пенлеве 251
5.3 Трансценденты, определяемые нелинейными уравнениями четвертого порядка 253
5.4 Локальные представления решений для уравнений четвертого порядка 258
5.5 Асимптотические свойства трансцендент уравнений четвертого порядка 264
5.6 Семейства уравнений с решениями в виде трансцендент 266
5.7 Пары Лакса для уравнений четвертого порядка 271
5.8 Обобщения уравнений Пенлеве 277
5.9 Преобразования Бэклунда для высших аналогов уравнений Пенлеве 284
5.10 Рациональные и специальные решения высших аналогов уравнений Пенлеве 291
5.11 Дискретные уравнения, соответствующие высшим аналогам уравнений Пенлеве 295
5.12 Задачи и упражнения к главе 5 304
ГЛАВА 6. МЕТОД ОБРАТНОЙ ЗАДАЧИ И МЕТОД ХИРОТЫ ДЛЯ РЕШЕНИЯ УРАВНЕНИЯ КОРТЕВЕГА - ДЕ ВРИЗА 306
6.1 Задача Коши для уравнения Кортевега - де Вриза 306
6.2 Прямая задача рассеяния 307
6.3 Интегральный вид стационарного уравнения Шредингера 313
6.4 Аналитические свойства амплитуды рассеяния 315
6.5 Уравнение Гельфанда - Левитана - Марченко 318
6.6 Интегрирование методом обратной задачи рассеяния уравнения Кортевега - де Вриза 321
6.7 Решение уравнения Кортевега - де Вриза в случае безотражательных потенциалов 323
6.8 Оператор Хироты и его свойства 326
6.9 Нахождение солитонных решений уравнения Кортевега - де Вриза методом Хироты 327
6.10 Метод Хироты для модифицированного уравнения Кортевега - де Вриза 331
6.11 Задачи и упражнения к главе 6 333
Литература 337
Предметный указатель.

(обыкновенное или с частными производными), в к-рое по крайней мере одна из производных неизвестной функции (включая и производную нулевого порядка - саму неизвестную функцию) входит нелинейно. Этот термин обычно употребляют, когда хотят специально подчеркнуть, что рассматриваемое дифференциальное уравнение Н=0 не является линейным, т. е. его левая часть Нне представляет собой линейную форму от производных неизвестной функции с коэффициентами, зависящими только от независимых переменных.

Иногда под Н. д. у. понимается наиболее общее уравнение определенного вида. Напр., нелинейным обыкновенным дифференциальным уравнением 1-го порядка наз. уравнение с произвольной функцией ; при этом линейное обыкновенное дифференциальное уравнение 1-го порядка соответствует частному случаю

Н. д. у. с частными производными 1-го порядка для неизвестной функции z от. пнезависимых переменных имеет вид

где F- произвольная своих аргументов; в случае

такое уравнение наз. квазилинейным, а в случае

Линейным.

Н. Розов.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "НЕЛИНЕЙНОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ" в других словарях:

    Уравнение вида где F заданная действительная функция точки х=(xt, ..., х п)области Dевклидова пространства Е п, и действительных переменных (и(х) неизвестная функция) с неотрицательными целочисленными индексами i1 ,..., in, k=0, ..., т, по… … Математическая энциклопедия

    Уравнение, к рое содержит хотя бы одну производную 2 го порядка от неизвестной функции и(х)и не содержит производных более высокого порядка. Напр., линейное уравнение 2 го порядка имеет вид где точка х (х 1, х 2, ..., х п)принадлежит нек рой… … Математическая энциклопедия

    Уравнение, содержащее неизвестную функцию под знаками дифференциальных и интегральных операций. И. д. у. включают и интегральные и дифференциальные уравнения. Линейные И. д. у. Пусть f(x) заданная функция, дифференциальные выражения с достаточно… … Математическая энциклопедия

    - (др. греч. εἰκών) это нелинейное дифференциальное уравнение в частных производных, встречающееся в задачах распространения волн, когда волновое уравнение аппроксимируется с помощью теории ВКБ. Оно является следствием уравнений Максвелла, и… … Википедия

    Уравнение вида где есть мультииндекс с целыми неотрицательными где. Аналогично определяется Н. у … Математическая энциклопедия

    Нелинейное обыкновенное дифференциальное уравнение 2 го порядка или, в самосопряженной форме, где константа. Точка х=0является для Э. у. особой. Заменой переменной уравнение (1) приводится к виду а заменой к виду После замены переменных и… … Математическая энциклопедия

    Уравнение (линейное или нелинейное), в к ром неизвестным является элемент какого либо банахова пространства, конкретного (функционального) или абстрактного, т. е. уравнение вида где Р(х) нек рый, вообще говоря, нелинейный оператор, переводящий… … Математическая энциклопедия

    Уравнение неравновесной статистпч. физики, используемое в теории газов, аэродинамике, физике плазмы, теории прохождения частиц через вещество, теории переноса излучения. Решение К. у. определяет функцию распределения дпнамич. состояний одной… … Математическая энциклопедия

    Нелинейное обыкновенное дифференциальное уравнение 2 го порядка (*) где функция F(и)удовлетворяет предположению: Р. у. описывает типичную нелинейную систему с одной степенью свободы, в к рой возможны автоколебания. Названо по имени Рэлея… … Математическая энциклопедия

    Нелинейное обыкновенное дифференциальное уравнение 2 го порядка Является важным частным случаем Лъенара уравнения. В. д. П. у. описывает свободные автоколебания одной из простейших нелинейных колебательных систем (осциллятора Ван дер Поля). В… … Математическая энциклопедия

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение дифуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что дифуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.


Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.


Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, как правильно оформить презентацию , обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":

Дифференциальное уравнение - это уравнение, в которое входят функция и одна или несколько ее производных. В большинстве практических задач функции представляют собой физические величины, производные соответствуют скоростям изменения этих величин, а уравнение определяет связь между ними.


В данной статье рассмотрены методы решения некоторых типов обыкновенных дифференциальных уравнений, решения которых могут быть записаны в виде элементарных функций , то есть полиномиальных, экспоненциальных, логарифмических и тригонометрических, а также обратных им функций. Многие из этих уравнений встречаются в реальной жизни, хотя большинство других дифференциальных уравнений нельзя решить данными методами, и для них ответ записывается в виде специальных функций или степенных рядов, либо находится численными методами.


Для понимания данной статьи необходимо владеть дифференциальным и интегральным исчислением, а также иметь некоторое представление о частных производных. Рекомендуется также знать основы линейной алгебры в применении к дифференциальным уравнениям, особенно к дифференциальным уравнениям второго порядка, хотя для их решения достаточно знания дифференциального и интегрального исчисления.

Предварительные сведения

  • Дифференциальные уравнения имеют обширную классификацию. В настоящей статье рассказывается об обыкновенных дифференциальных уравнениях , то есть об уравнениях, в которые входит функция одной переменной и ее производные. Обыкновенные дифференциальные уравнения намного легче понять и решить, чем дифференциальные уравнения в частных производных , в которые входят функции нескольких переменных. В данной статье не рассматриваются дифференциальные уравнения в частных производных, поскольку методы решения этих уравнений обычно определяются их конкретным видом.
    • Ниже приведены несколько примеров обыкновенных дифференциальных уравнений.
      • d y d x = k y {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=ky}
      • d 2 x d t 2 + k x = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}x}{{\mathrm {d} }t^{2}}}+kx=0}
    • Ниже приведены несколько примеров дифференциальных уравнений в частных производных.
      • ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 = 0 {\displaystyle {\frac {\partial ^{2}f}{\partial x^{2}}}+{\frac {\partial ^{2}f}{\partial y^{2}}}=0}
      • ∂ u ∂ t − α ∂ 2 u ∂ x 2 = 0 {\displaystyle {\frac {\partial u}{\partial t}}-\alpha {\frac {\partial ^{2}u}{\partial x^{2}}}=0}
  • Порядок дифференциального уравнения определяется по порядку старшей производной, входящей в данное уравнение. Первое из приведенных выше обыкновенных дифференциальных уравнений имеет первый порядок, в то время как второе относится к уравнениям второго порядка. Степенью дифференциального уравнения называется наивысшая степень, в которую возводится один из членов этого уравнения.
    • Например, приведенное ниже уравнение имеет третий порядок и вторую степень.
      • (d 3 y d x 3) 2 + d y d x = 0 {\displaystyle \left({\frac {{\mathrm {d} }^{3}y}{{\mathrm {d} }x^{3}}}\right)^{2}+{\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=0}
  • Дифференциальное уравнение является линейным дифференциальным уравнением в том случае, если функция и все ее производные стоят в первой степени. В противном случае уравнение является нелинейным дифференциальным уравнением . Линейные дифференциальные уравнения примечательны тем, что из их решений можно составить линейные комбинации, которые также будут решениями данного уравнения.
    • Ниже приведены несколько примеров линейных дифференциальных уравнений.
      • d y d x + p (x) y = q (x) {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}+p(x)y=q(x)}
      • x 2 d 2 y d x 2 + a x d y d x + b y = 0 {\displaystyle x^{2}{\frac {{\mathrm {d} }^{2}y}{{\mathrm {d} }x^{2}}}+ax{\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}+by=0}
    • Ниже приведены несколько примеров нелинейных дифференциальных уравнений. Первое уравнение является нелинейным из-за слагаемого с синусом.
      • d 2 θ d t 2 + g l sin ⁡ θ = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}\theta }{{\mathrm {d} }t^{2}}}+{\frac {g}{l}}\sin \theta =0}
      • d 2 x d t 2 + (d x d t) 2 + t x 2 = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}x}{{\mathrm {d} }t^{2}}}+\left({\frac {{\mathrm {d} }x}{{\mathrm {d} }t}}\right)^{2}+tx^{2}=0}
  • Общее решение обыкновенного дифференциального уравнения не является единственным, оно включает в себя произвольные постоянные интегрирования . В большинстве случаев число произвольных постоянных равно порядку уравнения. На практике значения этих констант определяются по заданным начальным условиям , то есть по значениям функции и ее производных при x = 0. {\displaystyle x=0.} Число начальных условий, которые необходимы для нахождения частного решения дифференциального уравнения, в большинстве случаев также равно порядку данного уравнения.
    • Например, в данной статье будет рассмотрено решение приведенного ниже уравнения. Это линейное дифференциальное уравнение второго порядка. Его общее решение содержит две произвольные постоянные. Для нахождения этих постоянных необходимо знать начальные условия при x (0) {\displaystyle x(0)} и x ′ (0) . {\displaystyle x"(0).} Обычно начальные условия задаются в точке x = 0 , {\displaystyle x=0,} , хотя это и не обязательно. В данной статье будет рассмотрено также, как найти частные решения при заданных начальных условиях.
      • d 2 x d t 2 + k 2 x = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}x}{{\mathrm {d} }t^{2}}}+k^{2}x=0}
      • x (t) = c 1 cos ⁡ k x + c 2 sin ⁡ k x {\displaystyle x(t)=c_{1}\cos kx+c_{2}\sin kx}

Шаги

Часть 1

Уравнения первого порядка

При использовании этого сервиса некоторая информация может быть передана YouTube.

Эту страницу просматривали 69 354 раз.

Была ли эта статья полезной?

Лучшие статьи по теме