Биология для всех
  • Главная
  • Экосистемы
  • Уровни организации жизни. Тема урока Организменный уровень жизни и его роль в природе Организменный уровень организации живого

Уровни организации жизни. Тема урока Организменный уровень жизни и его роль в природе Организменный уровень организации живого

Организм – это основная единица жизни, реальный носитель ее свойств, так как только в клетках организма происходят процессы жизни. Как отдельная особь организм входит в состав вида и популяции, являясь структурной единицей популяционно-видового уровня жизни.

Биосистемам организменного уровня присущи такие свойства: Обмен веществ Питание и пищеварение Дыхание Выделение Раздражимость Размножение Поведение Образ жизни Механизмы адаптации к среде обитания Нейрогуморальная регуляция процессов жизнедеятельности

Структурными элементами организма являются клетки, клеточные ткани, органы и системы органов с их уникальными жизненно важными функциями. Взаимодействие этих структурных элементов в их совокупности обеспечивает структурную и функциональную целостность организма.

Основные процессы в биосистеме организменного уровня: обмен веществ и энергии, характеризующийся согласованной деятельностью различных систем органов организма: поддержание постоянства внутренней среды, развертывание и реализация наследственной информации, а также проверка жизнеспособности данного генотипа, индивидуальное развитие (онтогенез).

Организация биосистемы организменного уровня отличается большим разнообразием систем органов и тканей, образующих организм; сформированностью систем управления, обеспечивающих согласованную работу всех компонентов биосистемы и выживание организма в сложных условиях среды; наличием различных механизмов адаптации к действию факторов, поддерживающих относительное постоянство внутренней среды, т. е. гомеостаза организма.

Значение организменного уровня жизни в природе выражается прежде всего в том, что на этом уровне возникла первичная дискретная биосистема, характеризующаяся самоподдержанием своей структуры, самовозобновлением, активно регулирующая на воздействие внешней среды и способная взаимодействовать с другими организмами.

Жизнедеятельность организма обеспечивается работой и взаимодействием его различных органов. Орган – это часть многоклеточного организма, выполняющая конкретную функцию (или группу взаимосвязных функций), имеющая определенное строение и состоящая из закономерно сложившегося комплекса тканей. Орган может выполнять свои функции самостоятельно или в составе системы органов (например, дыхательной, пищеварительной, выделительной или нервной).

У одноклеточных организмов функциональными частями особей являются органоиды, т. е. структуры, подобные органам. Организм – это совокупность систем органов, связанных между собой и внешней средой.

Все организмы как отдельные особи являются представителями различных популяций (и видов) и носителями их основных наследственных свойств и признаков. Поэтому каждый организм представляет уникальный пример популяции (и вида) в проявлении наследственных задатков, признаков и отношений со средой.

Гуморальная регуляция осуществляется через жидкие среды организма (кровь, лимфа, тканевая жидкость) с помощью биологически активных веществ, выделяемых клетками, тканями и органами при их функционировании. При этом важную роль выполняют гормоны, которые, вырабатываясь в специальных железах внутренней секреции, поступают непосредственно в кровь. У растений управление процессами роста и морфофизиологического развития осуществляют биологически активные химические соединения – фитогормоны, вырабатываемые специализированными тканями (меристемой в точках роста).

У одноклеточных (простейшие, водоросли, грибы) многие процессы жизнедеятельности также регулируются гуморальнохимическим путем посредством внешней и внутренней среды.

В ходе эволюции живых организмов возникла новая, более эффективная по быстроте управления процессами функционирования регуляция – нервная. Нервная регуляция – филогенетически более молодой тип регуляции по сравнению с гуморальной. Она основана на рефлекторных связях и адресована строго определенному органу или группе клеток. Скорость нервной регуляции в сотни раз выше, чем гуморальной.

Гомеостаз – это способность противостоять изменениям и сохранять динамически относительное постоянство состава и свойств организма.

У позвоночных животных и человека импульсы, посылаемые нервной системой, и выделяемые гормоны взаимно дополняют друга в регуляции процессов жизнедеятельности организма. Гуморальная регуляция подчинена нервной регуляции, вместе они составляют единую нервногуморальную регуляцию, обеспечивающую нормальное функционирования организма в изменяющихся условиях среды.

Питание одноклеточных Пиноцитоз – это поглощение жидкости и ионов. Фагоцитоз – это захват твердых оформленных частиц. Клетка может переваривать с помощью лизосом. Лизосомы переваривают практически все, даже содержимое своей клетки. Процесс саморазрушения клетки называется автолизом. Автолих происходит при высвобождение содержимого лизосом непосредственно в цитоплазму.

Движение одноклеточных Осуществляется с помощью разных органоидов и выростов цитоплазмы. В цитоплазме расположена сложная сеть микротрубочек, микрофиламентов и других структур, обладающих опорными и сократительными функциями, обеспечивающими амебоидное перемещение клетки. Некоторые простейшие перемещаются за счет волнообразного сокращения всего тела. Активное движение клетка совершает с помощью таких специальных образований, как жгутики и реснички.

Поведение (раздражимость) одноклеточных Проявляется в том, что они могут воспринимать из внешней среды различные раздражения и реагировать на них. Как правило, ответ на раздражение состоит в пространственном перемещении особей. Этот вид раздражимости у одноклеточных называется таксисом. Фототаксис – активная реакция на свет. Термотаксис – активная реакция на температуру. Геотаксис – активная реакция на притяжение земли.

Многоклеточным организмам, как и одноклеточным, присущи основные процессы жизнедеятельности: питание, дыхание, выделение, движение, раздражимость и др. Однако, в отличие от одноклеточных, у которых все процессы сосредоточены в одной клетке, у многоклеточных появляется разделение функций между клетками, тканями, органами, системами органов.

Сосудистые системы осуществляют транспортировку веществ внутри организма. Система дыхания поставляет организму необходимое количество кислорода и одновременно выводит многие продукты метаболизма. Использование кислорода, растворенного в воде, наиболее древний способ дыхания. Для этого используются жабры. У наземных позвоночных дыхательная система состоит из гортани, трахеи, парных бронхов и легких.

Процессы дыхания и выделения продуктов метаболизма у многих высокоорганизованных животных, особенно имеющих большие размеры, невозможны без участия кровеносной системы. КС впервые появилась у червей. У членистоногих, моллюсков и хордовых в КС есть особый пульсирующий орган – сердце. Помимо главной роли (обеспечение процессов обмена веществ и поддержание гомеостаза) КС позвоночных выполняет еще и другие функции: сохраняет постоянную температуру тела, переносит гормоны, участвует в борьбе с заболеваниями, в заживлении ран и др.

Кровь – жидкая ткань, циркулирующая в кровеносной системе. У всех позвоночных в крови имеются клеточные, или форменные, элементы. Это эритроциты, лейкоциты и тромбоциты.

Задания и вопросы 1. Охарактеризуйте отличия организменного уровня жизни от популяционно-видового. 2. На примере любого млекопитающего назовите основные структурные элементы биосистемы «организм» . 3. Поясните, какие признаки позволяют отнести к организмам туберкулезную бациллу у больного, окуня в реке и сосну в лесу. 4. Охарактеризуйте роль механизмов управления в существовании биосистемы. 5. Как осуществляется саморегуляция процессов жизнедеятельности у организма? 6. Поясните, как поглощают и как переваривают пищу одноклеточные организмы. Охарактеризуйте, каким образом одноклеточные ориентируются в окружающей среде.

Все живые организмы в природе состоят из одинаковых уровней организации, это общая для всех живых организмов характерная биологическая закономерность.
Выделяют следующие уровни организации живых организмов - молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический, биосферный.

Рис. 1. Молекулярно-генетический уровень

1. Молекулярно-генетический уровень. Это наиболее элементарный характерный для жизни уровень (рис. 1). Как бы сложно или просто ни было строение любого живого организма, они все состоят из одинаковых молекулярных соединений. Примером этого являются нуклеиновые кислоты, белки, углеводы и другие сложные молекулярные комплексы органических и неорганических веществ. Их называют иногда биологическими макро- молекулярными веществами. На молекулярном уровне происходят различные процессы жизнедеятельности живых организмов: обмен веществ, превращение энергии. С помощью молекулярного уровня осуществляется передача наследственной информации, образуются отдельные органоиды и происходят другие процессы.


Рис. 2. Клеточный уровень

2. Клеточныйуровенъ. Клетка является структурной и функциональной единицей всех живых организмов на Земле (рис. 2). Отдельные органоиды в составе клетки имеют характерное строение и выполняют определенную функцию. Функции отдельных органоидов в клетке взаимосвязаны и выполняют единые процессы жизнедеятельности. У одноклеточных организмов (одноклеточные водоросли и простейшие) все жизненные процессы проходят в одной клетке, и одна клетка существует как отдельный организм. Вспомните одноклеточные водоросли, хламидомонады, хлореллу и простейших животных - амебу, инфузорию и др. У многоклеточных организмов одна клетка не может существовать как отдельный организм, но она является элементарной структурной единицей организма.


Рис. 3. Тканевый уровень

3. Тканевый уровень. Совокупность сходных по происхождению, строению и функциям клеток и межклеточных веществ образует ткань. Тканевый уровень характерен только для многоклеточных организмов. Также отдельные ткани не являются самостоятельным целостным организмом (рис. 3). Например, тела животных и человека состоят из четырех различных тканей (эпителиальная, соединительная, мышечная, нервная). Растительные ткани называются: образовательная, покровная, опорная, проводящая и выделительная. Вспомните строение и функции отдельных тканей.


Рис. 4. Органный уровень

4. Органный уровень. У многоклеточных организмов объединение нескольких одинаковых тканей, сходных по строению, происхождению и функциям, образует органный уровень (рис. 4). В составе каждого органа встречается несколько тканей, но среди них одна наиболее значительная. Отдельный орган не может существовать как целостный организм. Несколько органов, сходных по строению и функциям, объединяясь, составляют систему органов, например пищеварения, дыхания, кровообращения и т. д.


Рис. 5. Организменный уровень

5. Организменный уровень. Растения (хламидомонада, хлорелла) и животные (амеба, инфузория и т. д.), тела которых состоят из одной клетки, представляют собой самостоятельный организм (рис. 5). А отдельная особь многоклеточных организмов считается как отдельный организм. В каждом отдельном организме происходят все жизненные процессы, характерные для всех живых организмов, - питание, дыхание, обмен веществ, раздражимость, размножение и т. д. Каждый самостоятельный организм оставляет после себя потомство. У многоклеточных организмов клетки, ткани, органы и системы органов не являются отдельным организмом. Только целостная система органов, специализированно выполняющих различные функции, образует отдельный самостоятельный организм. Развитие организма, начиная с оплодотворения и до конца жизни, занимает определенный промежуток времени. Такое индивидуальное развитие каждого организма называется онтогенезом. Организм может существовать в тесной взаимосвязи с окружающей средой.


Рис. 6. Популяционно-видовой уровень

6. Популяционно-видовой уровень. Совокупность особей одного вида или группы, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида, составляет популяцию. На популяционном уровне осуществляются простейшие эволюционные преобразования, что способствует постепенному появлению нового вида (рис. 6).


Рис. 7 Биогеоценотический уровень

7. Биогеоценотический уровень. Совокупность организмов разных видов и различной сложности организации, приспособленных к одинаковым условиям природной среды, называется биогеоценозом, или природным сообществом. В состав биогеоценоза входят многочисленные виды живых организмов и условия природной среды. В природных биогеоценозах накапливается энергия и передается от одного организма к другому. Биогеоценоз включает неорганические, органические соединения и живые организмы (рис. 7).


Рис. 8. Биосферный уровень

8. Биосферный уровень. Совокупность всех живых организмов на нашей планете и общей природной среды их обитания составляет биосферный уровень (рис. 8). На биосферном уровне современная биология решает глобальные проблемы, например определение интенсивности образования свободного кислорода растительным покровом Земли или изменения концентрации углекислого газа в атмосфере, связанные с деятельностью человека. Главную роль в биосферном уровне выполняют "живые вещества", т. е. совокупность живых организмов, населяющих Землю. Также в биосферном уровне имеют значение "биокосные вещества", образовавшиеся в результате жизнедеятельности живых организмов и "косных" веществ (т. е. условий окружающей среды). На биосферном уровне происходит круговорот веществ и энергии на Земле с участием всех живых организмов биосферы.

Уровни организации жизни. Популяция. Биогеоценоз. Биосфера.

  1. В настоящее время выделяют несколько уровней организации живых организмов: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический и биосферный.
  2. На популяционно-видовом уровне осуществляются элементарные эволюционные преобразования.
  3. Клетка - самая элементарная структурная и функциональная единица всех живых организмов.
  4. Совокупность сходных по происхождению, строению и функциям клеток и межклеточных веществ образует ткань.
  5. Совокупность всех живых организмов на планете и общей природной среды их обитания составляет биосферный уровень.
    1. Назовите по порядку уровни организации жизни.
    2. Что такое ткань?
    3. Из каких основных частей состоит клетка?
      1. Для каких организмов характерен тканевый уровень?
      2. Дайте характеристику органного уровня.
      3. Что такое популяция?
        1. Дайте характеристику организменному уровню.
        2. Назовите особенности биогеоценотического уровня.
        3. Приведите примеры взаимосвязанности уровней организованности жизни.

Заполните таблицу, показывающую структурные особенности каждого уровня организации:

Порядковый номер

Уровни организации

Особенности

В природе выра-жается прежде всего в том, что на этом уровне возникла основная дискретная живая единица — организм , характеризующаяся самоподдержанием своей структуры, самовозобновлением, активно реагирующая на внешнее воздейст-вие и способная взаимодействовать с другими организмами.

Именно на организменном уровне впервые в живой материи появились процессы, выражающие сущность жизни:

  • поиск укрытий и способы добычи пищи;
  • газообмен как процесс дыхания;
  • управление физиологическими про-цессами с помощью гуморальной и нервной систем;
  • общение между особями своего вида и других видов.

На организменном уровне впервые появляется процесс оплодотворе-ния и индивидуального развития особи как процесс реализации наследствен-ной информации, заключённой в хромосомах и их генах, а также оценка есте-ственным отбором жизнеспособности этой особи.

Организмы являются выразителями наследственных свойств популяций и видов. Именно организмы определяют успех или неудачу популяции в борьбе за ресурсы внешней среды и в борьбе за существование между особями. Поэтому во всех микропопуляционных процессах исторического значения организ-мы являются непосредственными участниками. В организмах накапливаются новые свойства вида. На организмах проявляет своё действие отбор, оставляя более приспособленных и выбраковывая других.

На организменном уровне проявляется двунаправленность жизни каж-дого организма. С одной стороны, это возможность организма (особи), ори-ентированная на выживание и размножение. С другой стороны, это обеспе-чение как можно более длительного существования его популяции и вида, иногда в ущерб жизни самого организма. В этом проявляется важное, эволю-ционное значение организменного уровня в природе.

Необходимо отметить также, что организмы, участвуя в цепях питания для поддержания своих процессов жизнедеятельности (в целях выживания), активно включаются как основные переносчики веществ и энергии в биоло-гический круговорот и трансформацию энергии в биогеоценозах. В этом вы-ражается глобальная роль организмов (автогрофов и гетеротрофов) и в це-лом организменного уровня жизни в структуре и устойчивости




Актуализация знаний Что такое жизнь? Какие уровни организации жизни вам известны? Какие уровни организации жизни уже изучили? Назовите элементарную единицу и структурные элементы организменного уровня? Как классифицируют живые организмы? Какие основные процессы протекают на организменном уровне? Назовите значение и роль организменного уровня в природе.


Жизнь- высшая по сравнению с физической и химической форма существования материи, закономерно возникающая при определённых условиях в процессе её развития. Живые объекты отличаются от неживых обменом веществ непременным условием жизни, способностью к размножению, росту, активной регуляции своего состава и функций, к различным формам движения, раздражимостью, приспособляемостью к среде и т. д.






















1. Земной шар 2. Саванна bask.77a/0_60627_c2e1a16f_XLhttp://img-fotki.yandex.ru/get/5507/mr-serg- bask.77a/0_60627_c2e1a16f_XL 3. Семейство кабанов в лесу fotki.yandex.ru/get/6601/ f/0_76b3b_d7ea102e_XLhttp://img- fotki.yandex.ru/get/6601/ f/0_76b3b_d7ea102e_XL 4.Треска dItem&g2_itemId=809&g2_serialNumber=3http:// dItem&g2_itemId=809&g2_serialNumber=3 5. Муравей jpg 6. Дерево 7. Инфузория туфелька 8. Клетки крови 9.Хлорелла jpghttp://ic.pics.livejournal.com/amelito/ /483791/483791_original. jpg 10.нейроны smear.jpghttp://facstaff.bloomu.edu/jhranitz/Courses/APHNT/Lab_Pictures/nerve_ smear.jpg 11. Молекула zwitterion-3D-balls-1.pnghttp://aminoacidsbcaa.com/wp-content/uploads/2012/10/L-Glutamine- zwitterion-3D-balls-1. png 12. ДНК

Различают такие уровни организации живой материи - уровни биологической организации: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой и экосистемный.

Молекулярный уровень организации - это уровень функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, липидов, стероидов. С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ, превращение энергии, передача наследственной информации . Этот уровень изучают: биохимия, молекулярная генетика, молекулярная биология, генетика, биофизика.

Клеточный уровень - это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов). Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология.

Тканевый уровень организации - это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией.

Органный уровень организации - это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология.

Организменный уровень организации - это уровень одноклеточных, колониальных и многоклеточных организмов. Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида. Этот уровень изучается морфологией (анатомией и эмбриологией), физиологией, генетикой, палеонтологией.

Популяционно-видовой уровень - это уровень совокупностей особей - популяций и видов . Этот уровень изучается систематикой, таксономией, экологией, биогеографией, генетикой популяций . На этом уровне изучаются генетические и экологические особенности популяций , элементарные эволюционные факторы и их влияние на генофонд (микроэволюция), проблема сохранения видов.

Экосистемный уровень организации - это уровень микроэкосистем, мезоэкосистем, макроэкосистем. На этом уровне изучаются типы питания, типы взаимоотношений организмов и популяций в экосистеме, численность популяций , динамика численности популяций, плотность популяций, продуктивность экосистем, сукцессии. Этот уровень изучает экология.

Выделяют также биосферный уровень организации живой материи. Биосфера - это гигантская экосистема, занимающая часть географической оболочки Земли. Это мега-экосистема. В биосфере происходит круговорот веществ и химических элементов, а также превращение солнечной энергии.

2. Фундаментальные свойства живой материи

Обмен веществ (метаболизм)

Обмен веществ (метаболизм) - совокупность протекающих в живых системах химических превращений, обеспечивающих их жизнедеятельность, рост, воспроизведение, развитие, самосохранение, постоянный контакт с окружающей средой, способность адаптироваться к ней и ее изменениям. В процессе обмена веществ происходит расщепление и синтез молекул, входящих в состав клеток; образование, разрушение и обновление клеточных структур и межклеточного вещества. В основе метаболизма лежат взаимосвязанные процессы ассимиляции (анаболизм) и диссимиляции (катаболизм). Ассимиляция - процессы синтеза сложных молекул из простых с расходованием энергии, запасенной в ходе диссимиляции (а также накопление энергии при отложении в запас синтезированных веществ). Диссимиляция - процессы расщепления (анаэробного или аэробного) сложных органических соединений, идущее с высвобождением энергии, необходимой для осуществления жизнедеятельности организма. В отличие от тел неживой природы обмен с окружающей средой для живых организмов является условием их существования. При этом происходит самообновление. Процессы обмена веществ, протекающие внутри организма, объединены в метаболические каскады и циклы химическими реакциями, которые строго упорядочены во времени и пространстве. Согласованное протекание большого количества реакций в малом объеме достигается путем упорядоченного распределения отдельных звеньев обмена веществ в клетке (принцип компартментализации). Процессы обмена веществ регулируются с помощью биокатализаторов - особых белков-ферментов. Каждый фермент обладает субстратной специфичностью катализировать превращение лишь одного субстрата. В основе этой специфичности лежит своеобразное "узнавание" субстрата ферментом. Ферментативный катализ отличается от небиологического чрезвычайно высокой эффективностью, в результате чего скорость соответствующей реакции повышается в 1010 - 1013 раз. Каждая молекула фермента способна осуществлять от нескольких тысяч до нескольких миллионов операций в минуту, не разрушаясь в процессе участия в реакциях. Еще одно характерное отличие ферментов от небиологических катализаторов состоит в том, что ферменты способны ускорять реакции при обычных условиях (атмосферном давлении, температуре тела организма и т.п.). Все живые организмы могут быть разделены на две группы - автотрофы и гетеротрофы, отличающиеся источниками энергии и необходимых веществ для своей жизнедеятельности. Автотрофы - организмы, синтезирующие из неорганических веществ органические соединения с использованием энергии солнечного света (фотосинтетики - зеленые растения, водоросли, некоторые бактерии) или энергии, получаемой при окислении неорганического субстрата (хемосинтетики - серо-, железобактерии и некоторые другие), Автотрофные организмы способны синтезировать все компоненты клетки. Роль фотосинтезирующих автотрофов в природы является определяющей - являясь первичным продуцентом органического вещества в биосфере, они обеспечивают существование всех других организмов и ход биогеохимических циклов в круговороте веществ на Земле. Гетеротрофы (все животные, грибы, большинство бактерий, некоторые бесхлорофилльные растения) - организмы, нуждающиеся для своего существования в готовых органических веществах, которые, поступая в качестве пищи, служат как источником энергии, так и необходимым "строительным материалом". Характерной чертой гетеротрофов является наличие у них амфиболизма, т.е. процесса образования мелких органических молекул (мономеров), образующихся при переваривании пищи (процесс деградации сложных субстратов). Такие молекулы - мономеры используются для сборки собственных сложных органических соединений.

Самовоспроизведение (репродукция)

Способность к размножению (воспроизведению себе подобных, самовоспроизведению) относится к одному из фундаментальных свойств живых организмов. Размножение необходимо для того, чтобы обеспечить непрерывность существования видов, т.к. продолжительность жизни отдельного организма ограничена. Размножение с избытком компенсирует потери, обусловленные естественным отмиранием особей, и таким образом поддерживает сохранение вида в ряду поколений особей. В процессе эволюции живых организмов происходила эволюция способов размножения. Поэтому у ныне существующих многочисленных и разнообразных видов живых организмов мы обнаруживаем разные формы размножения. Многие виды организмов сочетают несколько способов размножения. Необходимо выделить два, принципиально отличающихся типа размножения организмов - бесполое (первичный и более древний тип размножения) и половое. В процессе бесполого размножения новая особь образуется из одной или группы клеток (у многоклеточных) материнского организма. При всех формах бесполого размножения потомки обладают генотипом (совокупность генов) идентичным материнскому. Следовательно, все потомство одного материнского организма оказывается генетически однородным и дочерние особи обладают одинаковым комплексом признаков. При половом размножении новая особь развивается из зиготы, образующейся путем слияния двух специализированных половых клеток (процесс оплодотворения), продуцируемых двумя родительскими организмами. Ядро в зиготе содержит гибридный набор хромосом, образующийся в результате объединения наборов хромосом слившихся ядер гамет. В ядре зиготы, таким образом, создается новая комбинация наследственных задатков (генов), привнесенных в равной мере обоими родителями. А развивающийся из зиготы дочерний организм будет обладать новым сочетанием признаков. Иными словами, при половом размножении происходит осуществление комбинативной формы наследственной изменчивости организмов, обеспечивающий приспособление видов к меняющимся условиям среды и представляющей собой существенный фактор эволюции. В этом заключается значительное преимущество полового размножения по сравнению с бесполым. Способность живых организмов к самовоспроизведению базируется на уникальном свойстве нуклеиновых кислот к репродукции и феномене матричного синтеза, лежащего в основе образования молекул нуклеиновых кислот и белков. Самовоспроизведение на молекулярном уровне обусловливает как осуществление обмена веществ в клетках, так и самовоспроизведение самих клеток. Клеточное деление (самовоспроизведение клеток) лежит в основе индивидуального развития многоклеточных организмов и воспроизведения всех организмов. Размножение организмов обеспечивает самовоспроизведение всех видов, населяющих Землю, что в свою очередь обусловливает существование биогеоценозов и биосферы.

Наследственность и изменчивость

Наследственность обеспечивает материальную преемственность (поток генетической информации) между поколениями организмов. Она тесно связана с репродукцией на молекулярном, субклеточном и клеточном уровнях. Генетическая информация, определяющая разнообразие наследственных признаков, зашифрована в молекулярной структуре ДНК (у некоторых вирусов - в РНК). В генах закодирована информация о структуре синтезируемых белков, ферментных и структурных. Генетический код - это система "записи" информации о последовательности расположения аминокислот в синтезируемых белках с помощью последовательности нуклеотидов в молекуле ДНК. Совокупность всех генов организма называется генотипом, а совокупность признаков - фенотипом. Фенотип зависит как от генотипа, так и факторов внутренней и внешней среды, которые влияют на активность генов и обусловливают регулярные процессы. Хранение и передача наследственной информации осуществляется у всех организмов с помощью нуклеиновых кислот, генетический код един для всех живых существ на Земле, т.е. он универсален. Благодаря наследственности из поколения в поколение передаются признаки, обеспечивающие приспособленность организмов к среде их обитания. Если бы при размножении организмов проявлялась только преемственность существующих признаков и свойств, то на фоне меняющихся условий внешней среды существование организмов было бы невозможно, так как необходимым условием жизни организмов является их приспособленность к условиям среды обитания. Проявляется изменчивость в разнообразии организмов, принадлежащих к одному и тому же виду. Изменчивость может реализовываться у отдельных организмов в ходе их индивидуального развития или в пределах группы организмов в ряду поколений при размножении. Выделяют две основные формы изменчивости, различающиеся по механизмам возникновения, характеру изменения признаков и, наконец, их значимости для существования живых организмов - генотипическую (наследственную) и модификационную (ненаследственную). Генотипическая изменчивость связана с изменением генотипа и приводит к изменению фенотипа. В основе генотипической изменчивости могут лежать мутации (мутационная изменчивость) или новые комбинации генов, возникающие в процессе оплодотворения при половом размножении. При мутационной форме изменения связаны, в первую очередь, с ошибками при репликации нуклеиновых кислот. Таким образом происходит возникновение новых генов, несущих новую генетическую информацию; происходит появление новых признаков. И если вновь возникающие признаки полезны организму в конкретных условиях, то они "подхватываются" и "закрепляются" естественным отбором. Таким образом, на наследственной (генотипической) изменчивости базируется приспособляемость организмов к условиям внешней среды, разнообразие организмов, создаются предпосылки для позитивной эволюции. При ненаследственной (модификационной) изменчивости происходят изменения фенотипа под действием факторов внешней среды и не связанные с изменением генотипа. Модификации (изменения признаков при модификационной изменчивости) происходят в пределах нормы реакции, находящейся под контролем генотипа. Модификации не передаются следующим поколениям. Значение модификационной изменчивости заключается в том, что она обеспечивает приспособляемость организма к факторам внешней среды в течение его жизни.

Индивидуальное развитие организмов

Всем живым организмам свойственен процесс индивидуального развития - онтогенез. Традиционно, под онтогенезом понимают процесс индивидуального развития многоклеточного организма (образующегося в результате полового размножения) от момента формирования зиготы до естественной смерти особи. За счет деления зиготы и последующих поколений клеток формируется многоклеточный организм, состоящий из огромного числа разных типов клеток, различных тканей и органов. Развитие организма базируется на "генетической программе" (заложенной в генах хромосом зиготы) и осуществляется в конкретных условиях среды, существенно влияющей на процесс реализации генетической информации в ходе индивидуального существования особи. На ранних этапах индивидуального развития происходит интенсивный рост (увеличение массы и размеров), обусловленный репродукцией молекул, клеток и других структур, и дифференцировка, т.е. появление различий в структуре и усложнение функций. На всех этапах онтогенеза существенное регулирующее влияние оказывают на развитие организма различные факторы внешней среды (температура, гравитация, давление, состав пищи по содержанию химических элементов и витаминов, разнообразные физические и химические агенты). Изучение роли этих факторов в процессе индивидуального развития животных и человека имеет огромное практическое значение, возрастающее по мере усиления антропогенного воздействия на природу. В различных областях биологии, медицины, ветеринарии и других наук широко проводятся исследования по изучению процессов нормального и патологического развития организмов, выяснению закономерностей онтогенеза.

Раздражимость

Неотъемлемым свойством организмов и всех живых систем является раздражимость - способность воспринимать внешние или внутренние раздражители (воздействия) и адекватно на них реагировать. У организмов раздражимость сопровождается комплексом изменений, выражающихся в сдвигах обмена веществ, электрического потенциала на мембранах клеток, физико-химических параметров в цитоплазме клеток, в двигательных реакциях, а высокоорганизованным животным присущи изменения в их поведении.

4. Центральная догма молекулярной биологии - обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку , но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году и приведено в соответствие с накопившимися к тому времени данными в 1970 году. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК (например у некоторых вирусов), а также изменение конформации белков, передаваемое от молекулы к молекуле.

Универсальные способы передачи биологической информации

В живых организмах встречаются три вида гетерогенных, то есть состоящих из разных мономеров полимера - ДНК, РНК и белок. Передача информации между ними может осуществляться 3 х 3 = 9 способами. Центральная догма разделяет эти 9 типов передачи информации на три группы:

Общий - встречающиеся у большинства живых организмов;

Специальный - встречающиеся в виде исключения, у вирусов и у мобильных элементов генома или в условиях биологического эксперимента ;

Неизвестные - не обнаружены.

Репликация ДНК (ДНК → ДНК)

ДНК - основной способ передачи информации между поколениями живых организмов, поэтому точное удвоение (репликация) ДНК очень важна. Репликация осуществляется комплексом белков, которые расплетают хроматин , затем двойную спираль. После этого ДНК полимераза и ассоциированные с ней белки, строят на каждой из двух цепочек идентичную копию.

Транскрипция (ДНК → РНК)

Транскрипция - биологический процесс, в результате которого информация, содержащаяся в участке ДНК, копируется на синтезируемую молекулу информационной РНК . Транскрипцию осуществляют факторы транскрипции и РНК-полимераза . В эукариотической клетке первичный транскрипт (пре-иРНК) часто редактируется. Этот процесс называется сплайсингом .

Трансляция (РНК → белок)

Зрелая иРНК считывается рибосомами в процессе трансляции. В прокариотических клетках процесс транскрипции и трансляции не разделён пространственно, и эти процессы сопряжены. В эукариотических клетках место транскрипции клеточное ядро отделено от места трансляции (цитоплазмы ) ядерной мембраной , поэтому иРНК транспортируется из ядра в цитоплазму. иРНК считывается рибосомой в виде трёхнуклеотидных «слов». Комплексы факторов инициации и факторов элонгации доставляют аминоацилированные транспортные РНК к комплексу иРНК-рибосома.

5. Обратная транскрипция - это процесс образования двуцепочечной ДНК на матрице одноцепочечной РНК . Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении.

Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии , которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки. Встречается у ретровирусов , например, ВИЧ и в случае ретротранспозонов .

Трансдукция (от лат. transductio - перемещение) - процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом . Общая трансдукция используется в генетике бактерий для картирования генома и конструирования штаммов . К трансдукции способны как умеренные фаги, так и вирулентные, последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.

Векторная молекула ДНК - это молекула ДНК, которая выступает в роли носителя. Молекулу-носитель должен отличать ряд особенностей:

Способность к автономной репликации в клетке хозяина (чаще бактериальной или дрожжевой)

Наличие селективного маркера

Наличие удобных сайтов рестрикции

В роли векторов чаще всего выступают бактериальные плазмиды.

Лучшие статьи по теме