Биология для всех

Метод гармонической линеаризации пример. Гармоническая линеаризация нелинейностей

При подаче на вход линейной системы гармонического сигнала

на выходе системы также устанавливается гармонический сигнал, но с другой амплитудой и смещенный по фазе по отношению к входному. Если же синусоидальный сигнал подать на вход нелинейного элемента, то на его выходе формируются периодические колебания, но по форме существенно отличающиеся от синусоидальных. В качестве при­мера на рис. 8.17 показан характер изменения выходной переменной нелинейного элемента с релейной ха­рактеристикой (8.14) при поступлении на его вход синусоидальных колебаний (8.18).

Разлагая периодический сигнал на выходе нелинейного элемента в ряд Фурье, представляем в виде суммы постоянной составляющей и бесконечного множества гармонических составляющих:

, (8.19)

где постоянные коэффи­циенты ряда Фурье; – частота колебаний пер­вой гармоники (основная частота), равная частоте вход­ных синусоидальных колебаний;Т – период колебания первой гармоники, равный периоду входных синусоидальных колебаний.

Выходной сигнал нелинейного элемента поступает на вход линейной части САУ (см. рис. 8.1), которая, как правило, обладает существенной инерционностью. При этом высокочастотные составляющие сигнала (8.19) практически не проходят на выход системы, т.е. линейная часть является фильтром по отношению к высокочастотным гармоническим состав­ляющим. В связи с этим, а также учитывая, что ампли­туды гармонических составляющих в уменьшаются с ростом часто­ты гармоники, для приближенной оценки выходной величины нелинейного элемента, в большом числе случаев достаточно учитывать только первую гармониче­скую составляющую в .

Следовательно, при отсутствии постоянной составляю­щей в выходных колебаниях выражение (8.19) прибли­женно можно записать в виде:

Выражая из формулы (8.20) функцию , а из производной – функцию , преобразуем выражение (8.20) следующим образом:

. (8.21)

Таким образом, нелинейная зависимость выходной величины от входной в нелинейном элементе приближен­но заменяется линейной зависимостью, описываемой вы­ражением (8.21).

Выполнив в вы­ражении (8.21) преобразование Лапласа, получим:

Как и для непрерывных звеньев введем в рассмотрение переда­точную функцию нелинейного гармонически линеаризо­ванного элемента , как отношение изображения выходной ве­личины к изображению входной величины:

. (8.22)

Таблица 8.1

Коэффициенты гармонической линеаризации типовых нелинейностей

Статическая характеристика нелинейного элемента

Линейная характеристика с зоной нечувствительности

Линейная характеристика с ограничением

Линейная характеристика с зоной нечувствительности и ограничением

Характеристика «люфт»

Идеальная релейная характеристика

Однозначная релейная характеристика с зоной нечувствительности

Неоднозначная релейная характеристика с зоной нечувствительности

Кубическая парабола:

Характеристика «петля гистерезиса»

Передаточная функция нелинейного эле­мента имеет существенное отличие от передаточной функ­ции линейной системы , заключающееся в том, что зависит от амплитуды и частоты входного сигнала.

Выражение (8.22) запишем в виде:

q (A ) + q 1 (A ), (8.23)

где q(A) ,q 1 (A) – коэффициенты гармонической линеаризации, определяемые как отношения коэффициентов ряда Фурье для пер­вой гармоники выходных колебаний к амплитуде вход­ных колебаний:

q (A ) = q 1 (A ) = . (8.24)

Заменяя в выражении (8.23) р на , получим выражение длякомплексного коэффициента передачи нелинейного элемента :

q (A ) +j q 1 (A ), (8.25)

являющегося аналогом АФХ для линейного звена.

В качестве примера определим выражение для комплексного коэффициента передачи нелинейного элемента с релейной статической характеристикой (8.14). Коэффициенты ряда Фурье A 1 и B 1 для указанной нелинейности равны:

B 1 .

Очевидно, что коэффициент B 1 будет равен нулю для любого нелинейного элемента с нечетно-симметричной статической нелинейностью.

где - передаточная функция линейной части си­стемы; - передаточная функция нелинейного элемента после его линеаризации.

Если , то выражение (8.26) можно записать в виде:

Заменяя в выражении (8.27) р на , по­лучим комплексное выражение, в котором необходимо выделить вещественную и мнимую части:

[ q (A ) +j q 1 (A ) ] . (8.28)

При этом условие возникновения периодических колебаний в системе с частотой и амплитудой запишем:

(8.29)

Если решения системы (8.29) комплексные или отрицательные, режим автоколебаний в системе невозможен. Наличие положительных вещественных решений для и свидетельствует о наличии в системе автоколебаний, которые необходимо проверить на устойчивость.

В качестве примера найдем условия возникновения автоколеба­ний в САУ, если передаточная функция ее линейной части равна:

(8.30)

и нелинейным элементом типа «петля гистерезиса».

Передаточная функция гармонически линеаризованного нелинейного элемента (см. табл. 8.1) имеет вид:

. (8.31)

Подставляя выражения (8.30) и (8.31) в выражение (8.26) и заменяя р на , найдем выражение для :

Отсюда в соответствии с выражением (8.29) получаем следующие условия возникновения автоколебаний в системе:

Решение системы уравнений (8.29) обычно затруднительно, так как ко­эффициенты гармонической линеаризации имеют слож­ную зависимость от амплитуды входного сигнала. Кроме того, помимо определения амплитуды и частоты , необходимо оценить устойчивость автоколебаний в системе.

Условия возникновения автоколебаний в нелинейной системе и параметры предельных циклов можно исследо­вать, используя частотные критерии устойчивости, например, критерий устойчи­вости Найквиста. Согласно этому критерию при наличии ав токолебанийамплитудно-фазовая характеристика разомкнутой гармонически линеаризованной системы, равная

проходит через точку (-1, j0). Следовательно, для и справедливо равенство:

. (8.32)

Решение уравнения (8.32) относительно частоты и амплитуды автоколебаний можно получить графически. Для этого на комплексной плоскости необходимо, изменяя частоту от 0 до , построить годограф АФХ линейной части системы и, изменяя амплитудуА от 0 до , построить годограф обратной ха­рактеристики нелинейной части , взятый с знаком «минус». Если эти годографы не пересекаются, то режим автоколебаний в исследуемой системе не существует (рис. 8.18, б).

При пересечении годографов (рис. 8.18, а) в системе возникают автоколебания, частота и амплитуда которых опреде­ляются значениями и в точке пересечения..

Если и - пересекаются в нескольких точках (рис. 8.18, а), то это свидетельствует о наличии в системе нескольких предельных циклов. При этом колебания в системе могут быть устойчивы­ми и неустойчивыми.

Устойчивость автоколебательного режима оценивается следующим образом. Режим автоколебаний устойчив, если точка на годографе нелинейной части , соответствующая амплитуде большей по сравнению со значением в точке пересечения годографов, не охватывается годографом частотной характеристики линейной части системы. В противном случае автоколебательный режим неустойчив.

На рис. 8.18, а годографы пересекаются в точках 1 и 2. Точка 1 определяет неустойчивый режим автоколебаний, так как точка годографа , соответствующая увеличенной амплитуде, охватывается годографом частотной характеристики линейной части системы. Точке 2 соответствует устойчивый режим автоколебаний, амплитуда которых определяется по годографу а частота – по годографу .

В качестве примера оценим устойчивость автоколебаний в двух нелинейных системах. Будем полагать, что передаточные функции линейных частей этих систем совпадают и равны:

,

но входящие в них их нелинейные элементы различны. Пусть в первую систему включен нелинейный элемент «идеальное реле», описываемый системой (8.14), а во вторую – нелинейный элемент со статической характеристикой «кубическая парабола». Воспользовавшись данными таблицы 8.1, получим:

На рис. 8.19 изображены годографы этих систем совместно с годографом АФХ линейной части системы . На основании изложенного можно утверждать, что в первой системе возникают устойчивые автоколебания с частотой и амплитудой , а во второй системе автоколебания неустойчивые.

Министерство образования и науки Российской Федерации

Саратовский государственный технический университет

Балаковский институт техники, технологии и управления

Метод гармонической линеаризации

Методические указания к лабораторной работе по курсу «Теория автоматического управления» для студентов специальности 210100

Одобрено

редакционно –издательским советом

Балаковского интститута техники,

технологии и управления

Балаково 2004

Цель работы: Изучение нелинейных систем с помощью метода гармонической линеаризации (гармонического баланса), определение коэффициентов гармонической линеаризации для различных нелинейных звеньев. Получение навыков по нахождению параметров симметричных колебаний постоянной амплитуды и частоты (автоколебаний), используя алгебраический, частотный способы, а также с помощью критерия Михайлова.

ОСНОВНЫЕ СВЕДЕНИЯ

Метод гармонической линеаризации относится к приближенным методам исследования нелинейных систем. Он позволяет достаточно просто и с приемлемой точностью оценивать устойчивость нелинейных систем, определять частоту и амплитуду установившихся в системе колебаний.

Предполагается, что исследуемая нелинейная САУ может быть представлена в следующем виде

причем нелинейная часть должна иметь одну нелинейность

Эта нелинейность может быть как непрерывной, так и релейной, однозначной или гистерезисной.

Любую функцию или сигнал можно разложить в ряд по системе линейно-независимых, в частном случае ортонормированных функций. В качестве такого ортогонального ряда может быть использован ряд Фурье.

Разложим в ряд Фурье выходной сигнал нелинейной части системы

, (2)

здесь - коэффициенты Фурье,

,

,

. (3)

Таким образом, сигнал согласно (2) может быть представлен в виде бесконечной суммы гармоник с возрастающими частотами и т. д. Этот сигнал поступает на вход линейной части нелинейной системы.

Обозначим передаточную функцию линейной части

, (4)

причем степень полинома числителя должна быть меньше степени полинома знаменателя. В этом случае АЧХ линейной части имеет вид

где 1 - не имеет полюсов, 2 - имеет полюс или полюса.

Для АЧХ справедливо записать

Таким образом, линейная часть нелинейной системы является фильтром высоких частот. В этом случае линейная часть будет пропускать без ослабления только низкие частоты, высокие же по мере роста частоты будут существенно ослабляться.

В методе гармонической линеаризации делается предположение о том, что линейная часть системы будет пропускать только постоянную составляющую сигнала и первую гармонику. Тогда сигнал на выходе линейной части будет иметь вид

Этот сигнал проходит по всему замкнутому контуру системы Рис.1 и на выходе нелинейного элемента без учета более высоких гармоник, согласно (2) имеем

. (7)

При исследовании нелинейных систем с помощью метода гармонической линеаризации возможны случаи симметричных и несимметричных колебаний. Рассмотрим случай симметричных колебаний. Здесь и.

Введем следующие обозначения

Подставив их в (7), получим . (8)

С учетом того, что

. (9)

Согласно (3) и (8) при

,

. (10)

Выражение (9) является гармонической линеаризацией нелинейности устанавливает линейную связь входной переменной и выходной при . Величины и называются коэффициентами гармонической линеаризации.

Необходимо отметить, что уравнение (9) является линейным для конкретных величин и (амплитуды и частоты гармонических колебаний в системе). Но в целом оно сохраняет нелинейные свойства, так как коэффициенты различны для различных и . Эта особенность и позволяет исследовать с помощью метода гармонической линеаризации свойства нелинейных систем [ Попов Е.П.].

В случае несимметричных колебаний гармоническая линеаризация нелинейности приводит к линейному уравнению

,

,

. (12)

Так же как и уравнение (9), линеаризованное уравнение (11) сохраняет свойства нелинейного элемента, так как коэффициенты гармонической линеаризации , , а так же постоянная составляющая зависят и от смещения и от амплитуды гармонических колебаний .

Уравнения (9) и (11) позволяют получить передаточные функции гармонически линеаризованных нелинейных элементов. Так для симметричных колебаний

, (13)

при этом частотная передаточная функция

зависит только от амплитуды и не зависит от частоты колебаний в системе.

Необходимо отметить, что если нечетно-симметричная нелинейность однозначна, то в случае симметричных колебаний в соответствии с (9) и (10) получим, что , (15)

(16)

и линеаризованная нелинейность имеет вид

Для неоднозначных нелинейностей (с гистерезисом) интеграл в выражении (16) не равен нулю, вследствие различия в поведении кривой при возрастании и убывании , поэтому справедливо полное выражение (9).

Найдем коэффициенты гармонической линеаризации для некоторых нелинейных характеристик. Пусть нелинейная характеристика имеет вид релейной характеристики с гистерезисом и зоной нечувствительности. Рассмотрим, как гармонические колебания проходят через нелинейный элемент с такой характеристикой.



При выполнении условия , то есть если амплитуда входного сигнала меньше зоны нечувствительности , то сигнал на выходе нелинейного элемента отсутствует. Если же амплитуда , то реле переключается в точках A, B, C и D. Обозначим и .

,

. (18)

При вычислении коэффициентов гармонической линеаризации следует иметь ввиду, что при симметричных нелинейных характеристиках интегралы в выражениях (10) находятся на полупериоде (0, ) с последующим увеличением результата в два раза. Таким образом

,

. (19)

Для нелинейного элемента с релейной характеристикой и зоной нечувствительности

,

Для нелинейного элемента, имеющего релейную характеристику с гистерезисом

,

Аналогично могут быть получены коэффициенты гармонической линеаризации для других нелинейных характеристик.

Рассмотрим два способа определения симметричных колебаний постоянной амплитуды и частоты (автоколебаний) и устойчивости линеаризованных систем: алгебраический и частотный. Сначала рассмотрим алгебраический способ. Для замкнутой системы Рис.1 передаточная функция линейной части равна

.

Запишем гармонически линеаризованную передаточную функцию нелинейной части

.

Характеристической уравнение замкнутой системы имеет вид

. (22)

Если в исследуемой системе возникают автоколебания, то это говорит о наличии двух чисто мнимых корней в ее характеристическом уравнении. Поэтому подставим в характеристическое уравнение (22) значение корня .

. (23)

Представим

Получим два уравнения, определяющих искомую амплитуду и частоту

,

. (24)

Если в решении возможны вещественные положительные значения амплитуды и частоты , то в системе могут возникнуть автоколебания. Если же амплитуда и частота не имеет положительных значений, то автоколебания в системе невозможны.

Рассмотрим пример 1. Пусть исследуемая нелинейная система имеет вид

В этом примере нелинейный элемент представляет собой чувствительный элемент с релейной характеристикой, для которого коэффициенты гармонической линеаризации

Исполнительное устройство имеет передаточную функцию вида

Передаточная функция объекта регулирования равна

. (27)

Передаточная функция линейной части системы

, (28)

На основании (22), (25) и (28) запишем характеристическое уравнение замкнутой системы

, (29)

,

Пусть 1/сек, сек, сек, в.

В этом случае параметры периодического движения равны

7,071 ,

Рассмотрим способ определения параметров автоколебаний в линеаризованной САУ с помощью критерия Михайлова. Способ основан на том, что при возникновении автоколебаний система будет находиться на границе устойчивости и годограф Михайлова в этом случае будет проходить через начало координат.

В примере 2 найдем параметры автоколебаний при том условии, что нелинейный элемент в системе Рис.4 представляет собой чувствительный элемент, имеющий релейную характеристику с гистерезисом, для которого коэффициенты гармонической линеаризации

,

Линейная часть осталась неизменной.

Запишем характеристическое уравнение замкнутой системы

Годограф Михайлова получается заменой .

Задача заключается в том, чтобы подобрать такую амплитуду колебаний , при которой годограф пройдет через начало координат. Необходимо отметить, что при этом текущая частота , так как именно в этом случае кривая пройдет через начало координат.

Расчеты, проведенные в MATHCAD 7 при 1/сек, сек, сек, в и в, дали следующие результаты. На Рис.5 годограф Михайлова проходит через начало координат. Для повышения точности расчетов увеличим нужный фрагмент графика. На Рис.6 приведен фрагмент годографа, увеличенный в окрестности начала координат. Кривая проходит через начало координат при в.

Рис.5. Рис.6.

Частоту колебаний при этом можно найти из условия равенства нулю модуля . Для частот

значения модуля сведены в таблицу

Таким образом, частота колебаний 6,38 . Необходимо отметить, что точность расчетов легко может быть увеличена.

Полученное периодическое решение, определяемое значением амплитуды и частоты , необходимо исследовать на устойчивость. Если решение устойчиво, то в системе имеет место автоколебательный процесс (устойчивый предельный цикл). В противном случае предельный цикл будет неустойчивым.

Проще всего для исследования устойчивости периодического решения использовать критерий устойчивости Михайлова в графическом виде. Было установлено, что при кривая Михайлова проходит через начало координат. Если дать малое приращение , то кривая займет положение либо выше нуля, либо ниже. Так в последнем примере дадим приращение в, то есть и . Положение кривых Михайлова показано на Рис.7.

При кривая проходит выше нуля, что говорит об устойчивости системы и затухающем переходном процессе. При кривая Михайлова проходит ниже нуля, система является неустойчивой и переходный процесс является расходящимся. Таким образом периодическое решение с амплитудой в и частотой колебаний 6,38 устойчиво.

Для исследования устойчивости периодического решения может быть использован и аналитический критерий, получаемый из графического критерия Михайлова. Действительно, чтобы узнать пойдет ли кривая Михайлова при выше нуля достаточно посмотреть, куда будет перемещаться точка кривой Михайлова, которая при находится в начале координат.

Если разложить перемещение этой точки по координатным осям X и Y, то для устойчивости периодического решения вектор, определяемый проекциями на координатные оси

должен быть расположен справа от касательной MN к кривой Михайлова, если смотреть вдоль кривой в сторону возрастания , направление которой определяется проекциями

Аналитическое условие устойчивости запишем в следующем виде

В этом выражении частные производные берутся по текущему параметру кривой Михайлова

,

Необходимо отметить, что аналитическое выражение критерия устойчивости (31) справедливо только для систем не выше четвертого порядка, так как например для системы пятого порядка в начале координат условие (31) может выполняться, а система будет неустойчивой

Применим критерий (31) для исследования устойчивости периодического решения, полученного в примере 1.

,

,

, ,

Министерство образования и науки Российской Федерации

Саратовский государственный технический университет

Балаковский институт техники, технологии и управления

Метод гармонической линеаризации

Методические указания к лабораторной работе по курсу «Теория автоматического управления» для студентов специальности 210100

Одобрено

редакционно –издательским советом

Балаковского интститута техники,

технологии и управления

Балаково 2004

Цель работы: Изучение нелинейных систем с помощью метода гармонической линеаризации (гармонического баланса), определение коэффициентов гармонической линеаризации для различных нелинейных звеньев. Получение навыков по нахождению параметров симметричных колебаний постоянной амплитуды и частоты (автоколебаний), используя алгебраический, частотный способы, а также с помощью критерия Михайлова.

ОСНОВНЫЕ СВЕДЕНИЯ

Метод гармонической линеаризации относится к приближенным методам исследования нелинейных систем. Он позволяет достаточно просто и с приемлемой точностью оценивать устойчивость нелинейных систем, определять частоту и амплитуду установившихся в системе колебаний.

Предполагается, что исследуемая нелинейная САУ может быть представлена в следующем виде

причем нелинейная часть должна иметь одну нелинейность

. (1)

Эта нелинейность может быть как непрерывной, так и релейной, однозначной или гистерезисной.

Любую функцию или сигнал можно разложить в ряд по системе линейно-независимых, в частном случае ортонормированных функций. В качестве такого ортогонального ряда может быть использован ряд Фурье.

Разложим в ряд Фурье выходной сигнал нелинейной части системы

, (2)

здесь - коэффициенты Фурье,

,

,

. (3)

Таким образом, сигнал согласно (2) может быть представлен в виде бесконечной суммы гармоник с возрастающими частотами и т. д. Этот сигнал поступает на вход линейной части нелинейной системы.

Обозначим передаточную функцию линейной части

, (4)

причем степень полинома числителя должна быть меньше степени полинома знаменателя. В этом случае АЧХ линейной части имеет вид

где 1 - не имеет полюсов, 2 - имеет полюс или полюса.

Для АЧХ справедливо записать

Таким образом, линейная часть нелинейной системы является фильтром высоких частот. В этом случае линейная часть будет пропускать без ослабления только низкие частоты, высокие же по мере роста частоты будут существенно ослабляться.

В методе гармонической линеаризации делается предположение о том, что линейная часть системы будет пропускать только постоянную составляющую сигнала и первую гармонику. Тогда сигнал на выходе линейной части будет иметь вид

Этот сигнал проходит по всему замкнутому контуру системы Рис.1 и на выходе нелинейного элемента без учета более высоких гармоник, согласно (2) имеем

. (7)

При исследовании нелинейных систем с помощью метода гармонической линеаризации возможны случаи симметричных и несимметричных колебаний. Рассмотрим случай симметричных колебаний. Здесь и.

Введем следующие обозначения

,

.

Подставив их в (7), получим . (8)

С учетом того, что

,

, где ,

. (9)

Согласно (3) и (8) при

,

. (10)

Выражение (9) является гармонической линеаризацией нелинейности устанавливает линейную связь входной переменной и выходной при . Величины и называются коэффициентами гармонической линеаризации.

Необходимо отметить, что уравнение (9) является линейным для конкретных величин и (амплитуды и частоты гармонических колебаний в системе). Но в целом оно сохраняет нелинейные свойства, так как коэффициенты различны для различных и . Эта особенность и позволяет исследовать с помощью метода гармонической линеаризации свойства нелинейных систем [ Попов Е.П.].

В случае несимметричных колебаний гармоническая линеаризация нелинейности приводит к линейному уравнению

,

,

. (12)

Так же как и уравнение (9), линеаризованное уравнение (11) сохраняет свойства нелинейного элемента, так как коэффициенты гармонической линеаризации , , а так же постоянная составляющая зависят и от смещения и от амплитуды гармонических колебаний .

Уравнения (9) и (11) позволяют получить передаточные функции гармонически линеаризованных нелинейных элементов. Так для симметричных колебаний

Проиллюстрируем вычисление коэффициентов гармонической линеаризации на нескольких примерах: сначала для симметричных колебаний, а затем для несимметричных. Предварительно заметим, что если нечетно-симметричная нелинейность F(x) однозначна, то, согласно (4.11) и (4.10), получаем

причем при вычислении q (4.11) можно ограничиться интегрированием на четверти периода, учетверив результат, а именно

Для петлевой нелинейности F(x) (нечетно-симметричной) будет иметь место полное выражение (4.10)

причем можно пользоваться формулами

т. е. удвоением результата интегрирования на полупериоде.

Пример 1. Исследуем кубическую нелинейность (рис. 4.4, я):

Зависимость q(a) показана на рис. 4.4, б. Из рис. 4.4, а видно, что при заданной амплитуде я прямая q(a)x осредняет криволинейную зависимость F(x) на данном

участке -а£ х £. а. Естественно, что крутизна q(a) на­клона этой осредняющей прямой q{a}x увеличивается с увеличением амплитуды а (для кубической характе­ристики это увеличение происходит по квадратичному закону).

Пример 2. Исследуем петлевую релейную характе­ристику (рис. 4.5, а). На рис. 4.5,6 представлена подын­тегральная функция F(a sin y) для формул (4.21). Переключение реле имеет место при ½х ½= b, Поэтому в момент переключения величина y1 определяется выражением sin y1= b/а. По формулам (4.21) получаем (для a ³b)

На рис. 4.5, б изображены графики q(а) и q"(a). Первый из них показывает изменение крутизны наклона осредняющей прямой q(а )x с изменением а (см. рис. 4.5, а). Естественно, что q(a )à0 при аॠпри, так как сигнал на выходе остается постоянным (F(x )=c)при любом неограниченном увеличении входного сигна­ла х. Из физических соображений ясно также, почему q" <0. Это коэффициент при производной в формуле (4.20). Положительный знак давал бы опережение сиг­нала на выходе, в то время как гистерезисная петля дает запаздывание. Поэтому естественно, что q" < 0. Абсолют­ное значение q" уменьшается с увеличением амплиту­ды a, так как ясно, что петля будет занимать тем мень­шую часть «рабочего участка» характеристики F(x ), чем больше амплитуда колебаний переменной х.

Амплитудно-фазовая характеристика такой нелиней­ности (рис. 4.5, а), согласно (4.13). представляется в виде

причем амплитуда и фаза первой гармоники на выхода нелинейности имеют соответственно вид

где q и q" определены выше (рис. 4.5, б). Следовательно, гармоническая линеаризация переводит нелинейное ко­ординатное запаздывание (гистерезисную петлю) в экви­валентное запаздывание по фазе, характерное для ли­нейных систем, по с существенным отличием-зависи­мостью фазового сдвига от амплитуды входных колеба­ний, чего нет в линейных системах.



Пример 3. Исследуем однозначные релейные ха­рактеристики (рис. 4.6, а, в). Аналогично предыдущему получаем соответственно

что изображено на рис. 4.6, б, а.

Пример 4. Исследуем характеристику с зоной нечувствительности, линейным участком и насыщением (рис. 4.7, а). Здесь q" = 0, а коэффициент q (a ) имеет два варианта значений в соответствии срис. 4.7, б, где для них построена F (a sin y):

1) при b1 £ а £ b2, согласно (4.19), имеем

что сучетом соотношения a sin y1 = b 1 дает

2) при а ³ b2

что с учетом соотношения a sin y2 = b2 даёт

Графически результат представлен на рис. 4.7, а.

Пример 5. Как частные случаи, соответствующие коэффициенты q(a) для двух характеристик (рис. 4,8, а, б) равны

что изображено графически на рис. 4.8, б, г. При этом для характеристики с насыщением (рис. 4.8, а) имеем q= k при 0 £ a £ b.

Покажем теперь примеры вычисления коэффициен­тов гармонической линеаризации для несимметричных колебаний при тех же нелинейностях.

Пример 6. Для случая кубической нелинейности F(x ) = kx 3 по формуле (4.16) имеем

а по формулам (4.17)

Пример 7. Для петлевой релейной характеристики (рис. 4.5, а) по тем же формулам имеем

Пример 8. Для характеристики с зоной нечувстви­тельности (рис. 4.1:1) будут иметь место те же выраже­ния и q. Графики их представлены на рис. 4.9, а, б. При этом q" == 0. Для идеальной же релейной характе­ристики (рис. 4.10) получаем

что изображено на рис. 4.10, а и б.

Пример 9. Для характеристики с линейным участ­ком ц насыщением (рис.4.11,а) при а ³ b+½x 0 ½ имеем

Эти зависимости представлены в виде графиков на рис. 4.11, б, в.

Пример 10. Для несимметричной характеристики

(рис. 4. 12, а) по формуле (4.l6) находим

а по формулам (4.17)

Результаты изображены графически на рис. 4.12, б и в.

Полученные в этих примерах выражения и графики коэффициентов гармонической линеаризации будут ис­пользованы ниже при решении задач по исследованию

автоколебаний, вынужденных колебаний и процессов управления.

Базируясь на свойстве фильтра линейной части системы (лекция 12), ищем периодическое решение нелинейной системы (рис. 4.21) на входе нелинейного элемента приближенно в виде

х = a sin wt (4.50)

с неизвестными а и w. Задана форма нелинейности у= F(x ) и передаточная функция линейной части

Производится гармоническая линеаризация нелинейности

что приводит к передаточной функции

Амплитудно-фазовая частотная характеристика разомкнутой цепи системы получает вид

Периодическое решение линеаризованной системы (4.50) получается при наличии в характеристическом уравнении замкнутой системы пары чисто мнимых корней.

А это по критерию Найквиста соответствует прохождению W (j w) через точку -1. Следо­вательно, периодическое реше­ние (4.50) определяется равен­ством

Уравнение (4.51) определяет искомые амплитуду а и частоту w периодического решения. Это уравнение ре­шается графически следующим образом. На комплексной плоскости (U, V) вычерчивается амплитудно-фазовая частотная характеристика линейной части Wл(j w)(рис. 4.22), а также обратная амплитудно-фазовая ха­рактеристика нелинейности с обратным знаком -1/ Wн(a ). Точка В их пересечения (рис. 4.22) и определяет величи­ны а и w, причем значение а отсчитывается по кривой -1/ Wн (a), а значение w - по кривой Wл (jw).

Вместо этого можно пользоваться двумя скалярными уравнениями, вытекающими из (4.51) и (4.52):

которые также определяют две искомые величины а и w.

Последними двумя уравнениями удобнее пользоваться в логарифмическом масштабе, привлекая логарифмические­

частотные характери­стики линейной части. Тогда вместо (4.53) и (4.54) будем иметь следующие два урав­нения:

На рис. 4.23 слева изображены графики левых частей уравнений (4.55) и (4.56), а справа-правых частей этих уравнений. При этом по оси абсцисс слева часто­та w откладывается, как обычно, в логарифмическом масштабе, а справа-амплитуда а в натуральном масш­табе. Решением этих уравнений будут такие значения а и w, чтобы при них одновременно соблюдались оба ра­венства: (4.55) и (4.56). Такое решение показано на рис. 4.23 тонкими линиями в виде прямоугольника.

Очевидно, что сразу угадать это решение не удастся. Поэтому делаются попытки, показанные штриховыми линиями. Последние точки этих пробных прямоугольников М1 и М2 не попадают на фазовую характеристику нели­нейности. По если они расположены по обе стороны ха­рактеристики, как на рис. 4.23, то решение находится интерполяцией - путем проведения прямой ММ1.

Нахождение периодического решения.упрощается а случае однозначной нелинейности F(х ). Тогда q" = 0 и уравнения (4.55) и (4.56) принимают вид

Решение показано на рис. 4.24.

Рис. 4.24.

После определения периодического решения надо ис­следовать его устойчивость. Как уже говорилось, перио­дическое решение имеет место в случае, когда амплитудно-фазовая характеристика разомкнутой цепи

проходит через точку -1. Дадим амплитуде отклонение Dа . Система будет возвращаться к периодическому ре­шению, если при Dа > 0 колебания затухают, а при Dа < 0 - расходятся. Следовательно, при Dа > 0 харак­теристика W(jw, а ) дол­жна деформироваться (рис. 4.25) так, чтобы при Dа > 0 критерий устойчивости Найквиста соблюдался, а при Dа < 0 - нарушался.

Итак требуется, что­бы на данной часто­те w было

Отсюда следует, что на рис. 4.22 положительный отсчет амплитуды а вдоль кривой -1/Wн (а ) должен быть на­правлен изнутри вовне через кривую Wл (jw), как там и показано стрелкой. В противном случае периодическое решение неустойчиво.

Рассмотрим примеры.

Пусть в следящей системе (рис. 4.13, а) усилитель имеет релейную характеристику (рис. 4.17, а). Па рис. 4.17, б для нее показан график коэффициента гар­монической линеаризации q(а ), причем q’(а ) =0. Для определения периодического решения частотным спосо­бом, согласно рис. 4.22, надо исследовать выражение

Из формулы (4.24) получаем для данной нелинейности

График этой функции изображен па рис. 4.26.

Передаточная функция линейной части имеет вид

Амплитудно-фазовая характеристика для нее приведена на рис. 4.27. Функция же -1/ Wн (а ), являясь в данном слу­чае вещественной (рис. 4.26), укладывается вся на отрица­тельной части вещественной оси (рис. 4.27). При этом на участке изменения амплитуды b £ a £ b амплитуда отсчи­тывается слева извне внутрь кривой Wл(jw), а на участке а > b - в обратную сторону. Следовательно, первая точка пересечения (а 1) дает неустой­чивое периодическое решение, а вторая (а 2) - устойчивое (ав­токолебания). Это согласуется с прежним решением (пример 2 лекция 15, 16).

Рассмотрим также случай петлевой характеристики реле (рис. 4.28, а) в той же следящей системе (рис. 4.13, а). Амплитудно-фазовая частотная характе­ристика линейной части та же (рис. 4.28, б). Выражение же для кривой –1/Wн(а ), согласно (4.52) и (4.23), при­нимает вид

Это-прямая, параллельная оси абсцисс (рис. 4.28, б ), с отсчетом амплитуды а справа налево. Пересечение даст устойчивое периодическое решение (автоколебания). Чтобы получить графики зависимости амплитуды и частоты

от k л, представленные на рис. 4.20, нужно на рис. 4.28 построить серию кривых Wл(jw) для каждой величины k л и найти в их точках пересечения с прямой –1/Wн(а ) соответствующие значения а и w.

Метод гармонической линеаризации позволяет с достаточной для практики точностью исследовать устойчивость и точность нелинейных систем, используя методы, разработанные для линейных систем. Метод дает возможность определить наличие автоколебаний, а также их частоту и амплитуду.

Нелинейная система представляется в виде соединения линейной и нелинейной части (рис. 5).

Рис. 5 Схема нелинейной системы

Выходной сигнал нелинейной части системы в общем случае определяется выражением

Обозначим как передаточную функцию линейной части. Система уравнений примет вид

Найдем условия, при которых на выходе линейной части системы возникают гармонические колебания вида

В этом случае сигнал y(t) нелинейной части будет представлять собой также периодическую функцию, но отличную от синусоиды. Эту функцию можно разложить в ряд Фурье

В этом выражении a i и b i - коэффициенты Фурье. Для симметричных нелинейностей F 0 =0.

Основным условием, которое накладывает метод на линейную часть системы, является условие фильтра нижних частот. Считается, что линейная часть пропускает только первую гармонику колебаний. Данное допущение позволяет считать высшие гармоники в (7.19) несущественными и ограничиться рассмотрением только первой гармоники сигнала y(t).

то выражение (7.20) можно переписать в виде

Первое уравнение системы (7.17) примет вид

В этом выражении


Результат замены нелинейности F(x,sx) выражением

и называется гармонической линеаризацией. Величины q и q 1 называются коэффициентами гармонической линеаризации или просто гармоническими коэффициентами. Для однозначных нелинейностей обычно q 1 =0 . Формулы для гармонических коэффициентов, соответствующих типовым нелинейностям, приводятся в приложениях.

Принципиальное отличие гармонической линеаризации от обычной состоит в том, что при обычной линеаризации нелинейную характеристику заменяют прямой линией с определенной постоянной крутизной, а при гармонической линеаризации - прямой линией, крутизна которой зависит от амплитуды входного сигнала нелинейного элемента.

Рассмотрим методику определения амплитуды и частоты автоколебаний.

1). В характеристическом уравнении системы, полученном из (7.22) делаем замену s=j и получим

2). Из полученного выражения выделяем вещественную и мнимую части и приравниваем их нулю, что, по критерию Михайлова, соответствует нахождению системы на колебательной границе устойчивости.

  • 3).Решение этой системы дает частоту и значения гармонических коэффициентов. Если эти значения вещественны и положительны, то в системе существует предельный цикл. По значениям гармонических коэффициентов можно определить амплитуду предельного цикла.
  • 4). Общим признаком устойчивости предельного цикла, т.е. существования автоколебаний, является равенство нулю предпоследнего определителя Гурвица при полученных значениях амплитуды и частоты предельного цикла. Часто более удобно использовать условие устойчивости предельного цикла, в основе которого лежит критерий устойчивости Михайлова.

Если это неравенство выполняется, то предельный цикл устойчив и в системе существуют автоколебания с определенными выше амплитудой и частотой. Индекс ”*” означает, что производные вычислены при уже известных значениях гармонических коэффициентах, амплитуды и частоты.

Пример. Допустим, что в уже рассмотренной выше системе стабилизации угла тангажа самолета рулевой привод нелинейный и его структурная схема имеет вид, показанный на рис. 7.6.

Рис.6 Схема нелинейного рулевого привода

Зададим следующие параметры нелинейности скоростной характеристикм рулевого привода: b = 0.12, k 1 = tg =c/b = 6.7. Коэффициенты гармонической линеаризации этой нелинейности определяются выражениями

Заменив в схеме нелинейную характеристику гармоническим коэффициентом, получим передаточную функцию рулевого привода

Подставим эту передаточную функцию в структурную схему системы стабилизации угла тангажа и определим передаточную функцию замкнутой системы

В характеристическом уравнении замкнутой системы сделаем замену s = j и выделим вещественную и мнимую части.

Из второго уравнения системы получим выражение для частоты: , и подставив его в первое уравнение, после преобразований получим

Подставив сюда ранее определенные выражения для коэффициентов характеристического уравнения, можно получить квадратное уравнение относительно гармонического коэффициента, решив которое, найдем

По этим значениям можно вычислить для двух случаев все коэффициенты характеристического уравнения и определить частоты, соответствующие каждому значению q(А). Получим:

Оба значения гармонического коэффициента и соответствующие частоты вещественны и положительны. Следовательно, в системе существуют два предельных цикла. Значения амплитуды предельного цикла определяются численно путем подбора такого значения при котором формула для коэффициента гармонической линеаризации дает значение, равное ранее вычисленному. В рассматриваемом случае получим

Теперь оценим устойчивость предельных циклов. Используем неравенство, полученное из критерия Михайлова, для чего определим

Производная от коэффициента гармонической линеаризации, входящая в полученные выражения, вычисляется по формуле


Расчеты по выше приведенным формулам показывают, что первый предельный цикл не устойчив и возникает он при (0) 0.1166(6.7 0 ). Если начальное отклонение меньше указанного, то процесс на входе нелинейного элемента затухает (рис.7. 7) и система устойчива.


Если начальное значение угла тангажа больше указанного, то процессы сходятся ко второму предельному циклу, который устойчив и, таким образом в системе возникают автоколебания (рис. 8).


Рис. 8

Путем моделирования определено, что область притяжения устойчивого предельного цикла лежит приблизительно в пределах (0) 0.1167 - 1.4 (6.71 0 - 80.2 0 ).

Лучшие статьи по теме