Биология для всех

Что такое аморфное состояние вещества. Школьная энциклопедия

Аморфное состояние амо́рфное состоя́ние

твёрдое состояние вещества, характеризующееся изотропией физических свойств, обусловленной неупорядоченным расположением атомов и молекул. В отличие от кристаллического состояния переход из твёрдого аморфного состояния в жидкое происходит постепенно. В аморфном состоянии находятся различные вещества: стёкла, смолы, пластмассы и т. д.

АМОРФНОЕ СОСТОЯНИЕ

АМО́РФНОЕ СОСТОЯ́НИЕ, твердое конденсированное состояние (см. КОНДЕНСИРОВАННОЕ СОСТОЯНИЕ) вещества, характеризующееся изотропией (см. ИЗОТРОПИЯ) физических свойств, обусловленной неупорядоченным расположением атомов и молекул. Кроме изотропии свойств (механических, тепловых, электрических, оптических и т. д.) для аморфного состояния вещества характерно наличие температурного интервала, в котором аморфное вещество при повышении температуры переходит в жидкое состояние. Этот процесс происходит постепенно: при нагревании аморфные вещества в отличие от кристаллических, сначала размягчаются, затем начинают растекаться и, наконец, становятся жидкими, т. е. аморфные вещества плавятся в широком интервале температур.
Изотропия свойств характерна и для поликристаллического состояния (см. Поликристаллы (см. ПОЛИКРИСТАЛЛЫ) ), но поликристаллы имеют строго определенную температуру плавления, что позволяет отличать поликристаллическое состояние от аморфного.
В аморфных веществах, в отличие от кристаллических, отсутствует дальний порядок (см. ДАЛЬНИЙ ПОРЯДОК И БЛИЖНИЙ ПОРЯДОК) в расположении частиц вещества, но присутствует ближний порядок (см. БЛИЖНИЙ ПОРЯДОК) , соблюдаемый на расстояниях, соизмеримых с размерами частиц. Поэтому аморфные вещества не образуют правильной геометрической структуры, представляя собой структуры неупорядоченно расположенных молекул.
Структурное отличие аморфного вещества от кристаллического обнаруживается с помощью рентгенограмм. Монохроматические рентгеновские лучи, рассеиваясь на кристаллах, образуют дифракционную картину в виде отчетливых линий или пятен (см. Дифракция рентгеновских лучей (см. ДИФРАКЦИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ) ). Для аморфного состояния это не характерно.
В отличие от кристаллического состояния, аморфное состояние вещества не является равновесным. Оно возникает в результате кинетических факторов и со структурной точки зрения эквивалентно жидкому состоянию: аморфное вещество представляет собой переохлажденную жидкость, обладающую очень большой вязкостью. Обычно аморфное состояние образуется при быстром охлаждении расплава, когда не успевает пройти кристаллизация вещества. Такой процесс характерен для получения стекол, поэтому аморфное состояние часто называют стеклообразным состоянием. Однако чаще всего даже самое быстрое охлаждение недостаточно быстро для того, чтобы помешать образованию кристаллов. В результате этого большинство веществ получить в аморфном состоянии невозможно.
Самопроизвольный процесс перестройки аморфного вещества в равновесную кристаллическую структуру за счет диффузионных тепловых смещений атомов практически бесконечен. Но иногда такие процессы можно достаточно легко осуществить. Например, аморфное стекло после выдержки при определенной температуре «расстекловывается», т.е. в нем появляются мелкие кристаллики и стекло мутнеет.
В природе аморфное состояние менее распространено, чем кристаллическое. В аморфном состоянии находятся: опал (см. ОПАЛ) , обсидиан (см. ОБСИДИАН) , янтарь (см. ЯНТАРЬ) , смолы природные (см. СМОЛЫ ПРИРОДНЫЕ) , битумы (см. БИТУМЫ) . В аморфном состоянии могут находиться не только вещества, состоящие из отдельных атомов и обычных молекул, такие, как стекла неорганические (см. СТЕКЛО НЕОРГАНИЧЕСКОЕ) и жидкости (низкомолекулярные соединения), но и вещества, состоящие из длинноцепочечных макромолекул - высокомолекулярные соединения, или полимеры (см. аморфные полимеры (см. АМОРФНЫЕ ПОЛИМЕРЫ) ). Физические свойства аморфных веществ сильно отличаются от кристаллических, благодаря чему они нашли широкое применение в промышленности (см. аморфные и стеклообразные полупроводниковые материалы (см. АМОРФНЫЕ И СТЕКЛООБРАЗНЫЕ ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ) , аморфные магнетики (см. АМОРФНЫЕ МАГНЕТИКИ) , аморфные металлы (см. АМОРФНЫЕ МЕТАЛЛЫ) ).


Энциклопедический словарь . 2009 .

  • Амон
  • аморфность

Смотреть что такое "аморфное состояние" в других словарях:

    АМОРФНОЕ СОСТОЯНИЕ - (от греч. amorphos бесформенный), твёрдое состояние в ва, характеризующееся изотропией св в и отсутствием точки плавления. При повышении темп ры аморфное в во размягчается и переходит в жидкое состояние постепенно. Эти особенности обусловлены… … Физическая энциклопедия

    Аморфное состояние - – твёрдое состояние вещества, обладающее двумя особенностями: его свойства (механические, тепловые, электрические и т. д.) в естественных условиях не зависят от направления в веществе (изотропия); при повышении температуры вещество,… … Энциклопедия терминов, определений и пояснений строительных материалов

    АМОРФНОЕ СОСТОЯНИЕ - АМОРФНОЕ СОСТОЯНИЕ, состояние твердого тела, характеризующееся изотропией физических свойств, обусловленной неупорядоченным расположением атомов и молекул. В отличие от кристаллического состояния (смотри Кристаллы), переход из аморфного состояния … Современная энциклопедия

    АМОРФНОЕ СОСТОЯНИЕ - конденсированное состояние вещества, характеризующееся изотропией физических свойств, обусловленной неупорядоченным расположением атомов и молекул. В отличие от кристаллического состояния переход из твердого аморфного в жидкое происходит… … Большой Энциклопедический словарь - – состояние твердого вещества, у которого отсутствует строгая периодичность, присущая кристаллам (дальний порядок). Из за меньшей упорядоченности аморфные вещества при тех же Р Т имеют больший объем и большую внутреннюю энергию, чем кристаллы.… … Палеомагнитология, петромагнитология и геология. Словарь-справочник.

    Аморфное состояние - (от греч. а отрицательная частица и morphē форма) твёрдое состояние вещества, обладающее двумя особенностями: его свойства (механические, тепловые, электрические и т. д.) в естественных условиях не зависят от направления в веществе… … Большая советская энциклопедия

    АМОРФНОЕ СОСТОЯНИЕ - тв. некристаллич. состояние в ва, характеризующееся изотропией физ. свойств и отсутствием точки плавления. При повышении темп ры аморфное в во размягчается и постепенно переходит в жидкое состояние. Эти особенности обусловлены отсутствием в А. с … Естествознание. Энциклопедический словарь


Аморфное состояние (аморфный - бесформенный, от греч. о! - отриц. приставка и цорсрт] - форма) - состояние твёрдых тел, в котором они

обладают, в противоположность кристаллам, изотропией , т. е. имеют одинаковые физические свойства по всем направлениям (ср. Кристаллы, Анизотропия). Газы и жидкости можно в этом смысле также считать аморфными.

Аморфные тела бывают естественные (опал ,вулканич. стекло - обсидиан , янтарь , смолы, битумы) и искусственные (обычное стекло, плавленый кварц , бакелит); ряд окислов и солей можно получить в аморфном виде. Одни из аморфных тел весьма сложны по составу (обычное стекло), другие же представляют собой простые химические соединения, напр, стекловидные кварц, бура, борный ангидрид и др. Обычное стекло - наиболее характерный пример аморфного тела, поэтому в настоящее время принято твёрдое тело в А. с. называть стеклообразным. Изотропия аморфного вещества проявляется, нанример, в том, что оно не даёт плоской поверхности расщепления, как кристалл, обладающий спайностью, а даёт неправильный «раковистый» излом. Физические свойства вещества в А. с. - сжимаемость , электро-и теплопроводность , оптич. свойства и др. - по всем направлениям одинаковы. Двойное лучепреломление в аморфном веществе отсутствует, если только вещество не находится под напряжением. Быстрым охлаждением аморфное вещество можно получить в закалённом виде (см. Батавские слезки); тогда в нём оказываются значительные внутренние напряжения, к-рые дают весьма резкие интерференционные полосы н поляризационном приборе. Медленный отжиг вполне уничтожает закалку. Это имеет огромное значение при выработке стекла. В настоящее нромя широко применяется ноляриза-ционно-оптический метод исследования напряжений в деталях машин на моделях, изготовленных из аморфных пластмасс.

Свойства аморфных тел определяются их структурой. В кристаллах атомы или ионы расположены в кристаллической решётке с определённой периодичной закономерностью; у аморфного тела атомы и молекулы расположены хаотически. Изотропия аморфного вещества и объясняется беспорядочным распределением его частиц. Резкое различие в поведении кристаллов и аморфных веществ обнаруживается при переходе твёрдого тела в жидкое состояние и обратно. Кривая плавления кристалла имеет более или менее резкую остановку температуры в точке плавления, где поглощается скрытая теплота (см.) и обнаруживается прерывное изменение всех свойств (рисунок!). У аморфного тела переход совершается постепенно, без нарушения непрерывности, и наблюдается «интервал размягчения» интервал весьма ве-1.000°), в котором

Время t Рис. 1.

(для обычных стёкол этот

вещество из твёрдого состояния постепенно пере ходит в текучее . При обратном процессе часто обнаруживается переохлаждение ; вещество не кристаллизуется в точке плавления, но при дальнейшем охлаждении загустевает в жидком состоянии, вязкость (см.) его сильно увеличивается, молекулы теряют свою подвижность, и, наконец,

происходит затвердевание в аморфном виде. Молекулы вещества в этом случае оказываются расположенными беспорядочно, так как они не успели образовать правильную кристаллическую решётку вследствие огромного внутреннего трения. Скрытая теплота при этом не выделяется, и запас энергии у аморфного вещества оказывается больше, чем у кристаллического; поэтому А. с. термодинамически неустойчиво и стремится перейти в устойчивую кристаллическую форму. Кристаллизация а твёрдом А. с. протекает весьма медленно; стёкла при кристаллизации мутнеют, превращаясь в фар-форообразную массу. При выработке стекла кристаллизация часто даёт большой брак и называется з а р у х а н и е м. При застывании раснлава в аморфном состоянии большую роль играют процессы ассоциации молекул, полимеризации и конденсации (см.), что представляет значительный интерес для производства бакелита ц других пластмасс.

Теория А. с. разработана на основании изучения процессов кристаллизации и переохлаждения. Способность вещества кристаллизоваться определяется числом центров кристаллизации п, образующихся в единицу времени (рис. 2-общая схема), линейной скоростью кристаллизации v и возрастанием вязкости т) при переохлаждении. Как видно из кривой 2, при переохлаждении вначале имеется максимум скорости кристаллизации, однако

в это время число центров еще невелико, так как максимум этой кривой лежит много ниже точки плавления. При дальнейшем охлаждении вязкость становится слишком большой, отчего затрудняется образование центров, и скорость кристаллизации становится исчезающе малой. Поэтому, если быстро переохладить расплав, он теряет способность кристаллизоваться и застывает в аморфную стекловидную массу. Хотя определённой точки перехода вещества из А. с. в жидкое но существует, ряд физических свойств в интервале размягчения обнаруживает аномальное поведение, примерно в том месте, где вязкость имеет значение абс. ед. (пуазов). Так, при нагревании коэфи-цпепт расширения в интервале размягчения весьма резко увеличивается, так же как и теплоемкость , электропроводность , диэлектрич. проницаемость, показатель преломления . На этом основании иногда считают, что стеклообразное аморфное состояние является особым четвёртым состоянием вещества.

С широким развитием рентгеновского анализа, а также электронографии выяснплось, что многие тела, считавшиеся раньше аморфными, на самом деле имеют мелкокристаллическую структуру, т. е. являются высокодисиерсными системами (см. Дисперсные системы). Выяснилось, что аморфный углерод состоит из мельчайших кристалликов, так же как и многие окиси и гидраты окисей металлов и ряд коллоидов, т. е. дисперсных частиц в коллоидных растворах. Исследования рентгенограмм показали, что в обычном стекле, в плавленом

Температура переохлаждения Рис. 2.

кварце, в стекле буры имеются зародыши кристаллов размером 10~6-10~7 см. Подтверждение этого факта дальнейшими исследованиями должно сгладить резкую грань в наших представлениях о структуре аморфных стекловидных веществ и обычных поликристаллических тел.

Лит.: К о бе ко П. П., Аморфное состояние. Л.-М., ; А в г у с т и и н и к А. И., Физическая химия силикатов. Л.-М., ; Б о т в и и к и н О. К., Введение в физическую химию силикатов, М.-Л., ; Б л ю м-берг Б. Я., Введение в физическую химию стекла, Л., ; Технология стекла (Специальный курс), под ред. И. И. Китайгородского, т. 1, М.-Л., ; Строение стекла. Сб. статей, под ред. М. А. Безбородова, М.-Л., ; Глаголев С. П., Кварцевое стекло , его свойства, производство и применение, М.-Л., ; Льюис У. К., Химия коллоидных и аморфных веществ, пер. с англ., М., ; Гатчек Э., Вязкость жидкостей, 2 изд., с доп. М. П. Воларовича и Д. М. Толстого, М.-Л.,

В последнее время интенсивно развивается физика некристаллических веществ, к которым, в частности, относятся аморфорные материалы. Основное отличие аморфных материалов от кристаллов состоит в том, что последние имеют и ближний, и дальний порядок симметрии, а первые – только ближний порядок. Напомним, что ближним порядком называют сохранение симметрии на длине в несколько межатомных расстояний. Соответственно дальний порядок для большинства материалов составляет ~10 нм – расстояние, в области которого сохраняется кристаллический порядок.

Идеальные кристаллы имеют и дальний, и ближний порядок. Даже реальные кристаллы по определению имеют оба порядка. Аморфные же тела – только ближний порядок. Атомы в таком теле располагаются в виде трехмерной непрерывной сетки , сходной с кристаллической решеткой соответствующего кристалла. Однако, в отличие кристаллической решетки, эта сетка неправильная: каждая ячейка немного деформирована. Исчезновение дальнего порядка также может быть связано с разрывом связей и флуктуациями состава в сложных соединениях (рис. 1.12, а ). Структура аморфных тел похожа на структуру жидкостей, что неудивительно, поскольку одним из способов получения аморфных тел является интенсивное охлаждение расплавов (рис. 1.12, б ).

а ) б )

Рис. 1.12. Структура аморфного тела (а ) и график его получения (б )

Сплав вливают на вращающийся вокруг своей оси барабан с жидким азотом (T = 73K). Скорость охлаждения составляет около 10 6 К /c, и расплав не успевает кристаллизироваться, процесс затвердевания идет по верхней кривой и характеризуется не температурой кристаллизации T к , а температурным интервалом Т к Т а (рис. 1,12, б ). На графике видно, что плотность аморфного тела несколько ниже, чем кристалла.

Аморфные материалы иногда называют стеклами. Они обладают иными свойствами, чем кристаллы. Аморфные материалы характеризуются отсутствием таких дефектов, как дислокации, границы зерен и т.д., что обуславливает очень высокую прочность и износостойкость. Так, например, предел прочности аморфных сплавов на основе железа значительно выше, чем у наиболее прочных сталей. Такие свойства аморфных металлов уже используются в головках магнитных записей, микроподшипниках, работающих без смазки и т.д.

В электронике применяются аморфные полупроводники. Их относительно слабая чувствительность к посторонним примесям позволяет использовать для изготовления более простые и дешевые методы, чем в случае выращивания монокристаллов.

В настоящее время наиболее перспективными областями применения аморфных полупроводников считаются следующие.

Электрофотография (ксерография ) – процесс, в котором используются фотопроводящие свойства селенового стекла. Для получения копии сначала обрабатывают верхнюю поверхность пленки из селенового стекла, распыляя по ней положительные ионы. При этом металлическая подложка приобретает отрицательный заряд. Затем пленку освещают отраженным от копируемого оригинала светом. Там, где на оригинале было изображение, свет поглощается; там, где изображения не было, свет отражается от листа и попадает на пленку. Так формируют позитивное изображение на аморфной пленке. После этого краситель притягивается к позитиву, переносится на лист положительно заряженной бумаги и закрепляется нагреванием.


Солнечные батареи – устройства для прямого преобразования световой энергии в электрическую (п. 7.8). Основным материалом для таких батарей является кремний, второй по распространенности в земной коре элемент. Однако сложность и энергоемкость получения чистого кристаллического кремния сдерживают работы в этом направлении. Использование аморфного кремния, малочувствительного к примесям, открывает широкие перспективы.

Переключатели и запоминающие устройства являются основой цифровой электроники. Халькогенидные стекла на основе серы, селена, теллура обладают свойством переходить из одного состояния в другое – переключаться. Эти состояния имеют различную проводимость. На рис. 1.13, а , б приводятся графики ВАХ таких элементов.

Рис. 1.13. Вольт-амперные характеристики с переключением

График на рис. 1.13, а соответствует так называемому пороговому переключению . Приложение к элементу напряжения выше порогового (U п ) приводит к скачку ВАХ с ветви 1 на ветвь 2, что соответствует росту проводимости на шесть порядков (состояние «включено»). Если напряжение, приложенное к элементу, уменьшить до точки возврата, элемент снова переключится в состояние с малой проводимостью.

Эффект переключения связан с особенностями электронной структуры халькогенидных стекол. Установлено, что проводящее состояние включается тогда, когда все присутствующие в стекле положительно и отрицательно заряженные ловушки заполняются носителями заряда. При этом время жизни инжектированных носителей резко возрастает. Если оно до переключения было много меньше времени, за которое носители успевают пересечь пленку, то после переключения время становится намного больше требуемого.

Переключение с запоминанием наблюдается в стеклах, которые могут легко кристаллизоваться. В момент, когда напряжение достигает порогового значения, в стекле образуются кристаллические нити, которые делают возможным запоминание. Стирается такая информация путем пропускания импульса, расплавляющего кристаллическую нить и возвращающего элемент в аморфное состояние.

Контрольные вопросы и задания

1.1. Каков характер сил, действующих в твердом теле?

1.2. Какое положение называют равновесным?

1.3. Дайте определение кристаллической решетки.

1.4. В чем причина изменения структуры твердого тела?

2.1. Дайте определение идеального кристалла.

2.2. Что называют трансляционным вектором?

2.3. Как определяются решетки Бравэ?

2.4. Дайте понятие элементарной ячейки.

2.5. Сколько частиц содержит элементарная ячейка?

2.6. Какова функция индексов Миллера?

2.7. Изобразите графически в кубической решетке плоскости Миллера (011), (211), (121), (121).

3.1. Какие колебания называют нормальными?

3.2. Каков частотный диапазон нормальных колебаний?

3.3. Чем отличается кристалл от непрерывной среды?

3.5. Дайте определение фазовой и групповой скоростей волны.

3.6. Какие колебания называют акустическими?

3.7. Чем отличаются оптические колебания от акустических?

3.8. Дайте определение фонона.

3.9. Как определить энергию фонона?

3.10. Что является причиной теплового расширения кристаллов?

4.1. Дайте определение реального кристалла.

4.2. Какие Вы знаете точечные дефекты?

4.3. Перечислите поверхностные дефекты.

4.4. Как влияет температура на дефектность тела?

4.6. Что можно сказать о движении дефектов?

4.7. Как появляются и исчезают дефекты?

4.8. Сравните концентрацию дефектов по Френкелю при изменении температуры на 100ºC.

5.1. Какие свойства относятся к структурозависимым?

5.2. Как влияют дефекты на электропроводность металлов?

5.3. Как влияют дефекты на электропроводность полупроводников?

5.4. Что называют центрами окраски?

5.5. Какие дефекты определяют механическую прочность твердых тел?

5.6. Объясните механизм упрочняющих операций.

6.1. Дайте определение жидких кристаллов.

6.2. Что представляет собой ближний порядок симметрии?

6.3. Какова структура нематических жидких кристаллов (ЖК)?

6.4 Какова структура холестерических ЖК?

6.5. Какова структура смектических ЖК?

6.6. Какие факторы влияют на структуры и свойства жидких кристаллов?

6.7. Назовите области применения жидких кристаллов.

7.1. Дайте определение аморфного состояния.

7.2. Назовите способы получения аморфных тел.

7.3. Опишите свойства аморфных полупроводников.

7.4. Где применяются аморфные металлы?

7.5. Где и как используются аморфные полупроводники?

7.6. Опишите механизм эффектов переключения.

Глава 2
ФИЗИЧЕСКИЕ ОСНОВЫ КВАНТОВОЙ МЕХАНИКИ

Существует несколько агрегатных состояний, в которых находятся все тела и вещества. Это:

  • жидкость;
  • плазма;
  • твердое.

Если рассматривать общую совокупность планеты и космоса, то большая часть веществ и тел все же находится в состоянии газа и плазмы. Однако на самой Земле существенно и содержание твердых частиц. Вот о них мы и поговорим, выяснив, чем являются кристаллические и аморфные твердые тела.

Кристаллические и аморфные тела: общее понятие

Все твердые вещества, тела, предметы условно подразделяются на:

  • кристаллические;
  • аморфные.

Разница между ними огромная, ведь в основе подразделения лежат признаки строения и проявляемых свойств. Если говорить кратко, то твердыми кристаллическими именуются те вещества и тела, которые имеют определенный тип пространственной кристаллической решетки, то есть обладают способностью изменяться в определенном направлении, но не во всех (анизотропия).

Если же характеризовать аморфные соединения, то первый их признак - способность менять физические характеристики по всем направлениям одновременно. Это называется изотропией.

Строение, свойства кристаллических и аморфных тел совершенно различны. Если первые имеют четко ограниченную структуру, состоящую из упорядоченно расположенных частиц в пространстве, то у вторых всякий порядок отсутствует.

Свойства твердых тел

Кристаллические и аморфные тела тем не менее относятся к единой группе твердых, а значит, обладают всеми характеристиками данного агрегатного состояния. То есть общими свойствами для них будут следующие:

  1. Механические - упругость, твердость, способность к деформации.
  2. Тепловые - температуры кипения и плавления, коэффициент теплового расширения.
  3. Электрические и магнитные - проводимость тепловая и электрическая.

Таким образом, рассматриваемые нами состояния обладают всеми данными характеристиками. Только проявляться у аморфных тел они будут несколько иначе, нежели у кристаллических.

Важными свойствами для промышленных целей являются механические и электрические. Способность восстанавливаться после деформации или, напротив, крошиться и измельчаться - важная особенность. Также большую роль играет тот факт, может вещество проводить электрический ток либо не способно к этому.

Строение кристаллов

Если описывать строение кристаллических и аморфных тел, то в первую очередь следует указать тип частиц, которые их слагают. В случае кристаллов это могут быть ионы, атомы, атом-ионы (в металлах), молекулы (редко).

Вообще данные структуры характеризуются наличием строго упорядоченной пространственной решетки, которая формируется в результате расположения образующих вещество частиц. Если представить строение кристалла образно, то получится примерно такая картина: атомы (или другие частицы) располагаются друг от друга на определенных расстояниях так, чтобы в результате получилась идеальная элементарная ячейка будущей кристаллической решетки. Затем данная ячейка многократно повторяется, и так складывается общая структура.

Главной особенностью является то, что физические свойства в подобных структурах изменяются в параллелях, но не во всех направлениях. Называется подобное явление анизотропией. То есть если воздействовать на одну часть кристалла, то вторая сторона может не реагировать на это. Так, можно измельчить половину кусочка поваренной соли, однако вторая останется целой.

Типы кристаллов

Принято обозначать два варианта кристаллов. Первый - это монокристаллические структуры, то есть когда сама решетка 1. Кристаллические и аморфные тела в этом случае совсем различны по свойствам. Ведь для монокристалла характерна анизотропия в чистом виде. Он представляет собой самую маленькую структуру, элементарную.

Если же монокристаллы повторяются многократно и соединяются в одно целое, тогда речь идет о поликристалле. Тогда речь об анизотропии не идет, так как ориентация элементарных ячеек нарушает общую упорядоченную структуру. В этом отношении поликристаллы и аморфные тела близки друг другу по проявляемым физическим свойствам.

Металлы и их сплавы

Кристаллические и аморфные тела очень близки друг другу. В этом легко убедиться, взяв в качестве примера металлы и их сплавы. Сами по себе они при обычных условиях твердые вещества. Однако при определенной температуре начинают плавиться и, пока не произойдет полная кристаллизация, будут оставаться в состоянии тянущейся, густой, вязкой массы. А это уже и есть аморфное состояние тела.

Поэтому, строго говоря, практически каждое кристаллическое вещество может при определенных условиях стать аморфным. Так же, как и последнее при кристаллизации становится твердым веществом с упорядоченной пространственной структурой.

Металлы могут иметь разные типы пространственных структур, самыми известными и изученными из которых являются следующие:

  1. Простая кубическая.
  2. Гранецентрированная.
  3. Объемоцентрированная.

В основе структуры кристалла может лежать призма или пирамида, а ее главная часть представлена:

  • треугольником;
  • параллелограммом;
  • квадратом;
  • шестиугольником.

Идеальными свойствами изотропии обладает вещество, имеющее простую правильную кубическую решетку.

Понятие об аморфности

Кристаллические и аморфные тела внешне различить достаточно просто. Ведь последние часто можно перепутать с вязкими жидкостями. В основе структуры аморфного вещества также лежат ионы, атомы, молекулы. Однако они не образуют упорядоченной строгой структуры, а потому и свойства их изменяются во всех направлениях. То есть они изотропны.

Частицы располагаются хаотично, беспорядочно. Лишь иногда они могут образовывать небольшие локусы, что все равно не влияет на общие проявляемые свойства.

Свойства подобных тел

Они идентичны таковым у кристаллов. Различия лишь в показателях для каждого конкретного тела. Так, например, можно выделить такие характеристические параметры аморфных тел:

  • упругость;
  • плотность;
  • вязкость;
  • тягучесть;
  • проводимость и полупроводимость.

Часто можно встретить граничные состояния соединений. Кристаллические и аморфные тела могут переходить в состояние полуаморфности.

Также интересна та черта рассматриваемого состояния, которая проявляется при резком внешнем воздействии. Так, если аморфное тело подвергнуть резкому удару или деформации, то оно способно повести себя как поликристалл и расколоться на мелкие кусочки. Однако если дать этим частям время, то вскоре они снова соединятся вместе и перейдут в вязкое текучее состояние.

У данного состояния соединений нет определенной температуры, при которой происходит фазовый переход. Этот процесс сильно растянут, иногда даже на десятки лет (например, разложение полиэтилена низкого давления).

Примеры аморфных веществ

Можно привести много примеров подобных веществ. Обозначим несколько самых наглядных и часто встречаемых.

  1. Шоколад - типичное аморфное вещество.
  2. Смолы, в том числе фенолформальдегидные, все пластики.
  3. Янтарь.
  4. Стекло любого состава.
  5. Битум.
  6. Гудрон.
  7. Воск и другие.

Аморфное тело образуется в результате очень медленной кристаллизации, то есть повышения вязкости раствора при понижении значения температуры. Часто сложно назвать подобные вещества твердыми, их относят скорее к вязким густым жидкостям.

Особое состояние имеют те соединения, которые при затвердевании вообще не кристаллизуются. Их называют стеклами, а состояние - стеклообразным.

Стеклообразные вещества

Свойства кристаллических и аморфных тел схожи, как мы выяснили, вследствие общего происхождения и единой внутренней природы. Но иногда от них отдельно рассматривают особое состояние веществ, именуемое стеклообразным. Это гомогенный минеральный раствор, который кристаллизуется и затвердевает без формирования пространственных решеток. То есть остается изотропным по изменению свойств всегда.

Так, например, обычное оконное стекло не имеет точного значения температуры плавления. Оно просто при повышении данного показателя медленно плавится, размягчается и переходит в жидкое состояние. Если же воздействие прекратить, то пойдет обратный процесс и начнется затвердевание, но без кристаллизации.

Такие вещества очень ценятся, стекло сегодня - один из самых распространенных и востребованных строительных материалов во всем мире.

Что такое "АМОРФНОЕ СОСТОЯНИЕ"? Как правильно пишется данное слово. Понятие и трактовка.

АМОРФНОЕ СОСТОЯНИЕ (от греч. amorphos - бесформенный), конденсированное состояние в-ва, главный признак к-рого - отсутствие атомной или молекулярной решетки, т. е. трехмерной периодичности структуры, характерной для кристаллического состояния. Аморфные тела изотропны, т. е. их св-ва (мех., оптич., электрич. и др.) не зависят от направления. А. с. обычно устанавливают, во-первых, по небольшому числу максимумов на дифракционной картине (как правило, 2-4) на фоне диффузного гало, для к-рых характерны большая полуширина и быстрое убывание интенсивности с ростом угла дифракции; во-вторых, по отсутствию в колебательном или электронном спектре расщеплений полос, связанных с симметрией структуры (см. Дифракционные методы, Молекулярные спектры). Расплавы всех в-в выше их т-ры плавления Т пл, находятся обычно в термодинамически равновесном состоянии, в к-ром любая термодинамич. ф-ция состояния (уд. объем, энтальпия, энтропия) однозначно определяется т-рой, давлением и др. параметрами. При Т пл в-во переходит в равновесное твердое состояние-кристаллизуется (см. рис.). Однако в определенных условиях при т-рах ниже Т пп м. б. получено неравновесное состояние переохлажденной жидкости, а при дальнейшем охлаждении ниже т-ры стеклования Т ст - неравновесное твердое А. с. (см. Стеклообразное состояние). В этом состоянии в-во м. б. устойчиво в течение длит. времени; известны, напр., вулканич. стекла (обсидиан и др.), возраст к-рых исчисляется миллионами лет. Термодинамич. ф-ции стеклообразного А. с. определяются не только т-рой и давлением, но зависят также от предыстории образца (напр., скорости охлаждения). Физ. и хим. св-ва в-ва в стеклообразном А. с. обычно близки к св-вам кристаллич. модификации того же в-ва, однако они могут существенно отличаться. Так, стеклообразный GeO2 раств. в воде и р-рах щелочей, реагирует с фтористоводородной и соляной к-тами, тогда как модификация GeO2 в воде практически не растворима, очень медленно раств. в р-рах щелочей при нагревании, не реагирует с указанными к-тами. Температурные интервалы существования аморфного и кристаллического состояний в-ва: сплошная линия -равновесное состояние, штрихпунктирная - неравновесное. Переход из переохлажденного жидкого в стеклообразное А. с. происходит обычно в узком температурном интервале и сопровождается резким изменением св-в, в частности вязкости (на 10-15 порядков), температурного коэф. расширения (в 10-100 раз), модулей упругости (в 10-1000 раз), теплоемкости, плотности и др., чем формально напоминает фазовый переход II рода. Однако образование стеклообразного А. с. не сопровождается появлением зародышей новой фазы и физ. границы раздела фаз. Т ст не является термодинамич. характеристикой в-ва и в зависимости от условий измерения может меняться на неск. десятков градусов. Это обусловлено тем, что в температурном интервале стеклования резко замедляется перестройка структуры ближнего порядка жидкости (структурная релаксация), т. е. кинетич. природой стеклования. Ниже Т ст структурные превращения в в-ве прекращаются совсем (при конечном времени наблюдения), частицы (атомы, молекулы, фрагменты молекул) способны лишь к колебательным и мелкомасштабным вра-щат. движениям, трансляционная подвижность, характерная для жидкого состояния, теряется. Т. обр., различие в св-вах жидкого и твердого А. с. определяется характером теплового движения частиц. Существуют в-ва, к-рые не удается получить в кристаллич. состоянии. К таким в-вам относятся статистич. сополимеры и атактич. полимеры, в макромолекулах к-рых последовательность мономерных звеньев нерегулярна в направлении оси цепи. Считается, что из-за отсутствия периодичности в строении макромолекул ни при каких условиях не может возникнуть трехмерная периодич. структура и, следовательно, эти в-ва существуют только в А. с. Вопрос о термодинамич. природе равновесного твердого А. с. пока остается открытым (см. Третье начало термодинамики). Ряд жесткоцепных полимеров с высокими Т ст существует только в стеклообразном состоянии, т. к. при нагр. выше Т ст они разлагаются. Попытки создания физ. моделей А. с. пока к успеху не привели. Лит.: Тарасов В. В., Проблемы физики стекла, под ред. Г. М. Бартенева, 2 изд., М., 1979; Филлипс Дж., Физика стекла, в сб.: Физика за рубежом, М., 1983, с. 154-78; ZallenR., The physics of amorphous solid, N. Y., 1983. Э. Ф. Олейник. Г. З. Пинскер.

Лучшие статьи по теме