Биология для всех
  • Главная
  • Материалы 
  • Естественно научный метод познания и его составляющие. Основные науки о природе (физика, химия, биология), их сходство и отличия

Естественно научный метод познания и его составляющие. Основные науки о природе (физика, химия, биология), их сходство и отличия

Введение

Наука является одной из основных форм человеческого познания. В настоящее время она становиться все более и более значимой и существенной частью реальности. Однако наука не была бы продуктивной, если бы не имела столь присущую ей развитую систему методов и принципов познания. Именно правильно выбранный метод наряду с талантом ученого помогает ему познавать различные явления, выяснять их сущность, открывать законы и закономерности. Существует огромное количество методов, и их число постоянно увеличивается. В настоящее время существует около 15000 наук и каждая из них имеет свои специфические методы и предмет исследования.

Цель данной работы - рассмотреть методы естественнонаучного познания и узнать, что представляет собой естественнонаучная истина. Для достижения поставленной цели я попытаюсь выяснить:

1) Что такое метод.

2) Какие методы познания существуют.

3) Как их группируют и классифицируют.

4) Что такое истина.

5) Особенности абсолютной и относительной истины.

Методы естественнонаучного познания

Научное познания представляет собой решение различного рода задач, возникающих в ходе практической деятельности. Возникшие при этом проблемы решаются путем использования особых приемов. Такая система приемов обычно и называется методом. Метод есть совокупность приемов и операций практического и теоретического познания действительности.

Каждая наука использует различные методы, которые зависят от характера решаемых в ней задач. Однако своеобразие научных методов состоит в том, что в каждом научно-исследовательском процессе меняется сочетание методов и их структура. Благодаря этому возникают особые формы (стороны) научного познания, важнейшими из которых являются эмпирическая и теоретическая.

Эмпирическая (экспериментальная) сторона представляет собой сбор фактов и информации (установление фактов, их регистрацию, накопление), а также их описание (изложение фактов и их первичная систематизация).

Теоретическая сторона связана с объяснением, обобщением, созданием новых теорий, выдвижением гипотез, открытием новых законов, предсказанием новых фактов в рамках этих теорий. С их помощью вырабатывается научная картина мира и тем самым осуществляется мировоззренческая функция науки.

Средства и методы познания рассмотренной выше стороны одновременно являются и ступенями развития научного знания. Так, эмпирическое, экспериментальное исследование предполагает целую систему экспериментальной и наблюдательной техники (устройств, в том числе вычислительных приборов, измерительных установок и инструментов), с помощью которой устанавливаются новые факты. Теоретическое исследование предполагает работу ученых, направленную на объяснение фактов (предположительное - с помощью гипотез, проверенное и доказанное - с помощью теорий и законов науки), на образование понятий, обобщающих данные. То и другое вместе осуществляет проверку познанного на практике.

В основе методов естествознания лежит единство его эмпирической и теоретической сторон. Они взаимосвязаны и дополняют друг друга. Их разрыв, или неравномерное развитие закрывает путь к правильному познанию природы - теория становится беспредметной, а опыт - слепым.

Методы естествознания могут быть подразделены на следующие группы:

1. Общие методы, касающиеся любого предмета и любой науки. Это различные методы, дающие возможность связывать воедино все стороны познания, например, метод восхождения от абстрактного к конкретному, единства логического и исторического. Это, скорее, общефилософские методы познания.

2. Частные методы - это специальные методы, действующие либо только в пределах отдельной отрасли науки, либо за пределами той отрасли, где они возникли. Таков метод кольцевания птиц, применяемый в зоологии. А методы физики, использованные в других отраслях естествознания, привели к созданию астрофизики, геофизики, кристаллофизики и др. Нередко применяется комплекс взаимосвязанных частных методов к изучению одного предмета. Например, молекулярная биология одновременно пользуется методами физики, математики, химии, кибернетики.

3. Особенные методы касаются лишь одной стороны изучаемого предмета или же определенного приема исследования: анализ, синтез, индукция, дедукция. К числу особенных методов также относятся наблюдение, измерение, сравнение и эксперимент.

В естествознании особенным методам науки придается чрезвычайно важное значение. Рассмотрим их сущность.

Наблюдение - это целенаправленный процесс восприятия предметов действительности без какого-либо вмешательства. Исторически метод наблюдения развивается как составная часть трудовой операции, включающей в себя установление соответствия продукта труда его запланированному образцу.

Наблюдение как метод познания действительности применяется либо там, где невозможен или очень затруднен эксперимент (в астрономии, вулканологии, гидрологии), либо там, где стоит задача изучить именно естественное функционирование или поведение объекта (в этологии, социальной психологии и т.п.). Наблюдение как метод предполагает наличие программы исследования, формирующейся на базе прошлых убеждений, установленных фактов, принятых концепций. Частными случаями метода наблюдения являются измерение и сравнение.

Эксперимент - метод познания, при помощи которого явления действительности исследуются в контролируемых и управляемых условиях. Он отличается от наблюдения вмешательством в исследуемый объект. Проводя эксперимент, исследователь не ограничивается пассивным наблюдением явлений, а сознательно вмешивается в естественный ход их протекания путем непосредственного воздействия на изучаемый процесс или изменения условий, в которых проходит этот процесс.

Специфика эксперимента состоит также в том, что в обычных условиях процессы в природе крайне сложны и запутанны, не поддаются полному контролю и управлению. Поэтому возникает задача организации такого исследования, при котором можно было бы проследить ход процесса в "чистом" виде. В этих целях в эксперименте отделяют существенные факторы от несущественных и тем самым значительно упрощают ситуацию. В итоге такое упрощение способствует более глубокому пониманию явлений и создает возможность контролировать немногие существенные для данного процесса факторы и величины.

Развитие естествознания выдвигает проблему строгости наблюдения и эксперимента. Дело в том, что они нуждаются в специальных инструментах и приборах, которые последнее время становятся настолько сложными, что сами начинают оказывать влияние на объект наблюдения и эксперимента, чего по условиям быть не должно. Это прежде всего относится к исследованиям в области физики микромира (квантовой механике, квантовой электродинамике и т.д.).

Аналогия - метод познания, при котором происходит перенос знания, полученного в ходе рассмотрения какого-либо одного объекта, на другой, менее изученный и в данный момент изучаемый. Метод аналогии основывается на сходстве предметов по ряду каких-либо признаков, что позволяет получить вполне достоверные знания об изучаемом предмете.

Применение метода аналогии в научном познании требует определенной осторожности. Здесь чрезвычайно важно четко выявить условия, при которых он работает наиболее эффективно. Однако в тех случаях, когда можно разработать систему четко сформулированных правил переноса знаний с модели на прототип, результаты и выводы по методу аналогии приобретают доказательную силу.

Моделирование - метод научного познания, основанный на изучении каких-либо объектов посредством их моделей. Появление этого метода вызвано тем, что иногда изучаемый объект или явление оказываются недоступными для прямого вмешательства познающего субъекта или такое вмешательство по ряду причин является нецелесообразным. Моделирование предполагает перенос исследовательской деятельности на другой объект, выступающий в роли заместителя интересующего нас объекта или явления. Объект-заместитель называют моделью, а объект исследования - оригиналом, или прототипом. При этом модель выступает как такой заместитель прототипа, который позволяет получить о последнем определенное знание.

Таким образом, сущность моделирования как метода познания заключается в замещении объекта исследования моделью, причем в качестве модели могут быть использованы объекты как естественного, так и искусственного происхождения. Возможность моделирования основана на том, что модель в определенном отношении отображает какие-либо стороны прототипа. При моделировании очень важно наличие соответствующей теории или гипотезы, которые строго указывают пределы и границы допустимых упрощений.

Современной науке известно несколько типов моделирования:

1) предметное моделирование, при котором исследование ведется на модели, воспроизводящей определенные геометрические, физические, динамические или функциональные характеристики объекта-оригинала;

2) знаковое моделирование, при котором в качестве моделей выступают схемы, чертежи, формулы. Важнейшим видом такого моделирования является математическое моделирование, производимое средствами математики и логики;

3) мысленное моделирование, при котором вместо знаковых моделей используются мысленно-наглядные представления этих знаков и операций с ними.

В последнее время широкое распространение получил модельный эксперимент с использованием компьютеров, которые являются одновременно и средством, и объектом экспериментального исследования, заменяющими оригинал. В таком случае в качестве модели выступает алгоритм (программа) функционирования объекта.

Анализ - метод научного познания, в основу которого положена процедура мысленного или реального расчленения предмета на составляющие его части. Цель расчленения это переход от изучения целого к изучению его частей.

Анализ - органичная составная часть всякого научного исследования, являющаяся обычно его первой стадией, когда исследователь переходит от нерасчлененного описания изучаемого объекта к выявлению его строения, состава, а также его свойств и признаков.

Синтез - это метод научного познания, в основу которого положена процедура соединения различных элементов предмета в единое целое, систему, без чего невозможно действительно научное познание этого предмета. Синтез выступает не как метод конструирования целого, а как метод представления целого в форме единства знаний, полученных с помощью анализа. В синтезе происходит не просто объединение, а обобщение особенностей объекта. Положения, получаемые в результате синтеза, включаются в теорию объекта, которая, обогащаясь и уточняясь, определяет пути нового научного поиска.

Индукция - метод научного познания, представляющий собой формулирование логического умозаключения путем обобщения данных наблюдения и эксперимента (метод построения от частного к более общему).

Непосредственной основой индуктивного умозаключения является вывод об общих свойствах всех предметов на основании наблюдения достаточно широкого множества единичных фактов. Обычно индуктивные обобщения рассматриваются как опытные истины, или эмпирические законы.

Различают полную и неполную индукцию. Полная индукция строит общий вывод на основании изучения всех предметов или явлений данного класса. В результате полной индукции полученное умозаключение имеет характер достоверного вывода. Суть неполной индукции состоит в том, что она строит общий вывод на основании наблюдения ограниченного числа фактов, если среди последних не встретились такие, которые противоречат индуктивному умозаключению. Поэтому естественно, что добытая таким путем истина неполна, здесь мы получаем вероятностное знание, требующее дополнительного подтверждения.

Дедукция - метод научного познания, который заключается в переходе от некоторых общих посылок к частным результатам-следствиям.

Умозаключение по дедукции строится по следующей схеме:

Все предметы класса "А" обладают свойством "В"; предмет "а" относится к классу "А"; значит "а" обладает свойством "В". В целом дедукция как метод познания исходит из уже познанных законов и принципов. Поэтому метод дедукции не позволяет получить содержательно нового знания. Дедукция представляет собой лишь способ выявления конкретного содержания на базе исходного знания.

Решение любой научной проблемы включает выдвижение различных догадок, предположений, а чаще всего более или менее обоснованных гипотез, с помощью которых исследователь пытается объяснить факты, не укладывающиеся в старые теории. Гипотезы возникают в неопределенных ситуациях, объяснение которых становится актуальным для науки. Кроме того, на уровне эмпирических знаний (а также на уровне их объяснения) нередко имеются противоречивые суждения. Для разрешения этих проблем требуется выдвижение гипотез.

Подобными методами исследования пользовался Шерлок Холмс. Он использовал в своих расследованиях, как индуктивный, так и дедуктивный метод. Так индуктивный метод строится на выявлении улик и самых незначительных фактов, которые в дальнейшем складываются в единую, неразрывную картину. Дедукция же строится по следующему принципу: когда уже есть общее - картина совершенного преступления, то ищется частное - преступник, т. е от общего к частного.

Гипотеза представляет собой всякое предположение, догадку или предсказание, выдвигаемое для устранения ситуации неопределенности в научном исследовании. Поэтому гипотеза есть не достоверное знание, а вероятное, истинность или ложность которого еще не установлены.

Любая гипотеза должна быть обязательно обоснована либо достигнутым знанием данной науки, либо новыми фактами (неопределенное знание для обоснования гипотезы не используется). Она должна обладать свойством объяснения всех фактов, которые относятся к данной области знания, систематизации их, а также фактов за пределами данной области, предсказывать появление новых фактов (например, квантовая гипотеза М. Планка, выдвинутая в начале XX в., привела к созданию квантовой механики, квантовой электродинамики и др. теорий). При этом гипотеза не должна противоречить уже имеющимся фактам.

Гипотеза должна быть либо подтверждена, либо опровергнута. Для этого она должна обладать свойствами фальсифицируемости и верифицируемости. Фальсификация - процедура, устанавливающая ложность гипотезы в результате экспериментальной или теоретической проверки. Требование фальсифицируемости гипотез означает, что предметом науки может быть только принципиально опровергаемое знание. Неопровержимое знание (например, истины религии) к науке отношения не имеет. При этом сами по себе результаты эксперимента опровергнуть гипотезу не могут. Для этого нужна альтернативная гипотеза или теория, обеспечивающая дальнейшее развитие знаний. В противном случае отказа от первой гипотезы не происходит. Верификация - процесс установления истинности гипотезы или теории в результате их эмпирической проверки. Возможна также косвенная верифицируемость, основанная на логических выводах из прямо верифицированных фактов.

Cмотрите так же...
Шпаргалки по философии для кандидатского минимума Часть 1
Философия и естествознание: концепции взаимоотношений (метафизическая, трансцендентальная, антиметафизическая, диалектическая).
Природа как объект философствования. Особенности познания природы.
Естествознание: его предмет, сущность, структура. Место естествознания в системе наук
Научная картина мира и её исторические формы. Естественнонаучная картина природы
Проблема объективности знания в современных естественных науках
Современная наука и изменение формирования мировоззренческих установок техногенной цивилизации
Взаимодействие естественных наук друг с другом. Науки о неживой природе и науки о живой природе
Конвергенция естественнонаучного и социально-гуманитарного знания в неклассической науке
Методы естествознания и их классификация.
Математика и естествознание. Возможности применения математики и компьютерного моделирования
Эволюция понятий пространства и времени в истории естествознания
Философия и физика. Эвристические возможности натурфилософии
Проблема дискретности материи
Идеи детерминизма и индетерминизма в естествознании
Принцип дополнительности и его философские интерпретации. Диалектика и квантовая механика
Антропный принцип. Вселенная как «экологическая ниша» человечества.
Проблема происхождения Вселенной. Модели Вселенной.
Проблема поиска внеземных цивилизаций как междисциплинарное направление научного поиска. Концепции ноокосмологии (И. Шкловский, Ф. Дрейк, К. Саган).
. Философские проблемы химии. Соотношение физики и химии.
. Проблема законов биологии
Эволюционная теория: ее развитие и философские интерпретации.
Философия экологии: предпосылки становления.
Этапы развития научной теории биосферы.
Взаимодействие человека и природы: пути его гармонизации.
Философия медицины и медицина как наука. Философские категории и понятия медицины
Проблема происхождения и сущности жизни в современной науке и философии
Понятие информации. Теоретико-информационный подход в современной науке.
Искусственный интеллект и проблема сознания в современной науке и философии
Кибернетика и общая теория систем, их связь с естествознанием.
Роль идей нелинейной динамики и синергетики в развитии современного естествознания.
Роль современного естествознания в преодолении глобальных кризисов.
Постнеклассическое естествознание и поиск нового типа рациональности. Исторически развивающиеся, человекоразмерные объекты, комплексные системы как объекты исследования в постнеклассическом естествознании
Этические проблемы современного естествознания. Кризис идеала ценностно-нейтрального научного исследования
Естествознание, технические науки и техника
All Pages

Методы естествознания и их классификация.

С появлением потребности получения знаний возникла потребность в анализе и оценке различных методов – т.е. в методологии.

Конкретные научные методы отражают тактику исследования, а общенаучные – стратегию.

Метод познания – способ организации средств, приемов теоретической и практической деятельности.

Метод является основным теоретическим инструментом получения и упорядочения научного знания.

Виды методов естествознания:

– общие (касаются любой науки) – единство логического и исторического, восхождение от абстрактного к конкретному;

– особенные (касаются только одной стороны изучаемого объекта) – анализ, синтез, сравнение, индукция, дедукция и др.;

– частные, которые действуют только в определенной области знаний.

Методы естествознания:

наблюдение – начальный источник информации, целенаправленный процесс восприятия предметов или явлений, используется там, где нельзя поставить прямой эксперимент, например в космологии (частные случаи наблюдения – сравнение и измерение);

анализ – основан на мысленном или реальном расчленении предмета на части, когда от цельного описания объекта переходят к его строению, составу, признакам и свойствам;

синтез – основан на соединении различных элементов предмета в единое целое и обобщении выделенных и изученных особенностей объекта;

индукция – состоит в формулировании логического умозаключения на основе обобщений данных эксперимента и наблюдений; логические рассуждения идут от частного к общему, обеспечивая лучшее осмысление и переход на более общий уровень рассмотрения проблемы;

дедукция – метод познания, состоящий в переходе от некоторых общих положений к частным результатам;

гипотеза – предположение, выдвигаемое для разрешения неопределенной ситуации, она призвана объяснить или систематизировать некоторые факты, относящиеся к данной области знания или находящиеся за ее пределами, но при этом не противоречить уже существующим. Гипотеза должна быть подтверждена или опровергнута;

метод сравнений – применяется при количественном сопоставлении исследуемых свойств, параметров объектов или явлений;

эксперимент – опытное определение параметров исследуемых объектов или предметов;

моделирование – создание модели интересующего исследователя предмета или объекта и проведение над ним эксперимента, наблюдения и дальнейшее наложение полученных результатов на изучаемый объект.

Общие методы познания касаются любой дисциплины и дают возможность соединить все этапы процесса познания. Эти методы используются в любой области исследования и позволяют выявлять связи и признаки исследуемых объектов. В истории науки исследователи к таким методам относят метафизический и диалектический методы. Частные методы научного познания – это методы, применяющиеся только в отдельной отрасли науки. Различные методы естествознания (физики, химии, биологии, экологии и т. д.) являются частными по отношению к общему диалектическому методу познания. Иногда частные методы могут использоваться за пределами тех отраслей естествознания, в которых они возникли. Например, физические и химические методы используются в астрономии, биологии, экологии. Часто исследователи применяют комплекс взаимосвязанных частных методов к изучению одного предмета. Например, экология одновременно пользуется методами физики, математики, химии, биологии. Частные методы познания связаны с особенными методами. Особенные методы исследуют определенные признаки изучаемого объекта. Они могут проявляться на эмпирическом и на теоретическом уровнях познания и быть универсальными.

Наблюдение представляет собой целенаправленный процесс восприятия предметов действительности, чувственное отражение объектов и явлений, в ходе которого человек получает первичную информацию об окружающем мире. Поэтому исследование чаще всего начинается с наблюдения, и лишь потом исследователи переходят к другим методам. Наблюдения не связаны с какой-либо теорией, но цель наблюдения всегда связана с некой проблемной ситуацией. Наблюдение предполагает наличие определенного плана исследования, предположение, подвергаемое анализу и проверке. Наблюдения используются там, где нельзя поставить прямой эксперимент (в вулканологии, космологии). Результаты наблюдения фиксируются в описании, отмечающем те признаки и свойства изучаемого объекта, которые являются предметом изучения. Описание должно быть максимально полным, точным и объективным. Именно описания результатов наблюдения составляют эмпирический базис науки, на их основе создаются эмпирические обобщения, систематизация и классификация.

Измерение – это определение количественных значений (характеристик) изучаемых сторон или свойств объекта с помощью специальных технических устройств. Большую роль в исследовании играют единицы измерения, с которыми сравниваются полученные данные.

Эксперимент – более сложный метод эмпирического познания по сравнению с наблюдением. Он представляет собой целенаправленное и строго контролируемое воздействие исследователя на интересующий объект или явление для изучения его различных сторон, связей и отношений. В ходе экспериментального исследования ученый вмешивается в естественный ход процессов, преобразует объект исследования. Специфика эксперимента состоит также в том, что он позволяет увидеть объект или процесс в чистом виде. Это происходит за счет максимального исключения воздействия посторонних факторов.

Абстрагирование – мысленное отвлечение от всех свойств, связей и отношений изучаемого объекта, которые считают несущественными. Таковы модели точки, прямой линии, окружности, плоскости. Результат процесса абстрагирования называется абстракцией. Реальные объекты в каких-то задачах могут быть заменены этими абстракциями (Землю при движении вокруг Солнца можно считать материальной точкой, но нельзя при движении по ее поверхности).

Идеализация представляет операцию мысленного выделения какого-то одного важного для данной теории свойства или отношения, мысленного конструирования объекта, наделенного этим свойством (отношением). В результате идеальный объект обладает только этим свойством (отношением). Наука выделяет в реальной действительности общие закономерности, которые существенны и повторяются в различных предметах, поэтому приходится идти на отвлечения от реальных объектов. Так образуются такие понятия, как «атом», «множество», «абсолютно черное тело», «идеальный газ», «сплошная среда». Полученные таким образом идеальные объекты в действительности не существуют, так как в природе не может быть предметов и явлений, имеющих только одно свойство или качество. При применении теории необходимо вновь сопоставить полученные и использованные идеальные и абстрактные модели с реальностью. Поэтому важны выбор абстракций в соответствии с их адекватностью данной теории и последующее исключение их.

Среди особенных универсальных методов исследований выделяют анализ, синтез, сравнение, классификацию, аналогию, моделирование.

Анализ – одна из начальных стадий исследования, когда от цельного описания объекта переходят к его строению, составу, признакам и свойствам. Анализ – метод научного познания, в основе которого лежит процедура мысленного или реального разделения объекта на составляющие его части и их отдельное изучение. Невозможно познать сущность объекта, только выделяя в нем элементы, из которых он состоит. Когда путем анализа частности исследуемого объекта изучены, он дополняется синтезом.

Синтез – метод научного познания, в основе которого лежит объединение выделенных анализом элементов. Синтез выступает не как метод конструирования целого, а как метод представления целого в форме единственных знаний, полученных с помощью анализа. Он показывает место и роль каждого элемента в системе, их связь с другими составными частями. Анализ фиксирует в основном то специфическое, что отличает части друг от друга, синтез – обобщает аналитически выделенные и изученные особенности объекта. Анализ и синтез берут свое начало в практической деятельности человека. Человек научился мысленно анализировать и синтезировать лишь на основе практического разделения, постепенно осмысливая то, что происходит с объектом при выполнении практических действий с ним. Анализ и синтез являются компонентами аналитико-синтетического метода познания.

Сравнение – метод научного познания, позволяющий установить сходство и различие изучаемых объектов. Сравнение лежит в основе многих естественнонаучных измерений, составляющих неотъемлемую часть любых экспериментов. Сравнивая объекты между собой, человек получает возможность правильно познавать их и тем самым правильно ориентироваться в окружающем мире, целенаправленно воздействовать на него. Сравнение имеет значение, когда сравниваются действительно однородные и близкие по своей сущности объекты. Метод сравнения выделяет отличия исследуемых объектов и составляет основу любых измерений, то есть основу экспериментальных исследований.

Классификация – метод научного познания, который объединяет в один класс объекты, максимально сходные друг с другом в существенных признаках. Классификация позволяет свести накопленный многообразный материал к сравнительно небольшому числу классов, типов и форм и выявить исходные единицы анализа, обнаружить устойчивые признаки и отношения. Как правило, классификации выражаются в виде текстов на естественных языках, схем и таблиц.

Аналогия – метод познания, при котором происходит перенос знания, полученного при рассмотрении какого-либо объекта, на другой, менее изученный, но схожий с первым по каким-то существенным свойствам. Метод аналогии основывается на сходстве предметов по ряду каких-либо признаков, причем сходство устанавливается в результате сравнения предметов между собой. Таким образом, в основе метода аналогии лежит метод сравнения.

Метод аналогии тесно связан с методом моделирования, который представляет собой изучение каких-либо объектов с помощью моделей с дальнейшим переносом полученных данных на оригинал. В основе этого метода лежит существенное сходство объекта-оригинала и его модели. В современных исследованиях используют различные виды моделирования: предметное, мысленное, символическое, компьютерное.

Лекция 1. Естествознание.

Основные науки о природе (физика, химия, биология), их сходство и отличия. Естественнонаучный метод познания и его составляющие: наблюдение, измерение, эксперимент, гипотеза, теория

С давних времен человек наблюдал за окружающим миром, от которого зависела его жизнь, пытался понять явления природы. Солнце давало людям тепло и приносило иссушающий зной, дожди поили живительной влагой поля и вызывали наводнения, неисчислимые бедствия несли ураганы и землетрясения. Не зная причин их возникновения, люди приписывали эти действия сверхъестественным силам, но постепенно они стали понимать действительные причины природных явлений и приводить их в определенную систему. Так зародились науки о природе.

Поскольку природа чрезвычайно многообразна, то в процессе ее познания формировались различные естественные науки: физика, химия, биология, астрономия, география, геология и многие другие. Так сформировалась целая совокупность естественных наук. По объектам исследования их можно разделить на две большие группы: науки о живой и неживой природе. Важнейшими естественными науками о живой и неживой природе являются: физика, химия, биология.

Физика наука, которая изучает наиболее общие свойства материи и формы ее движения (механическую, тепловую, электромагнитную, атомную, ядерную). Физика имеет много видов и разделов (общая физика, теоретическая физика, экспериментальная физика, механика, молекулярная физика, атомная физика, ядерная физика, физика электромагнитных явлений и т.д).

Химия наука о веществах, их составе, строении, свойствах и взаимных превращениях. Химия изучает химическую форму движения материи и делится на неорганическую и органическую химию, физическую и аналитическую химию, коллоидную химию и т.д.

Биология – наука о живой природе . Предметом биологии является жизнь как особая форма движения материи, законы развития живой природы. Биология, по-видимому, является самой разветвленной наукой (зоология, ботаника, морфология, цитология, гистология, анатомия и физиология, микробиология, вирусология, эмбриология, экология, генетика и т.д.). На стыке наук возникают смежные науки, такие как физическая химия, физическая биология, химическая физика, биофизика, астрофизика и т.д.

Естествознание наука о природе как единой целостности или совокупность наук о природе, взятая как единое целое.

Физика – наука о природе.

С незапамятных времен люди начали проводить систематические наблюдения за явлениями природы, стремились подметить последовательность происходящих явлений и научились предвидеть ход многих событий в природе. например, смену времен года, время разливов рек и многое другое. Эти свои знания они использовали для определения времени посева, уборки урожая и т.п. Постепенно люди убедились в том, что изучение явлений природы приносит неоценимую пользу.

В русском языке слово “физика” появилось в XVIII веке, благодаря Михаилу Васильевичу Ломоносову, ученому-энциклопедисту, основоположнику отечественной науки, выдающемуся деятелю просвещения, который сделал перевод с первого немецкого учебника по физике. Именно тогда в России и стали серьезно заниматься этой наукой.

Физическое тело – это каждый окружающий нас предмет. Какие вы знаете физические тела? (ручка, книга, парта)

Вещество - это всё то, из чего состоят физические тела. (Показ физических тел, состоящих из разных веществ)

Материя – это всё то, что существует во Вселенной независимо от нашего сознания (небесные тела, растения, животные и др.)

Физические явления – это изменения, происходящие с физическими телами.

Основные физические явления это:

    Механические явления

    Электрические явления

    Магнитные явления

    Световые явления

    Тепловые явления

Методы научного познания:

Соотношение общенаучных методов

Анализ - мысленное или реальное разложение объекта на составляющие его части.

Синтез - объединение познанных в результате анализа элементов в единое целое.

Обобщение - процесс мысленного перехода от единичного к общему, от менее общего, к более общему, например: переход от суждения «этот металл проводит электричество» к суждению «все металлы проводят электричество», от суждения: «механическая форма энергии превращается в тепловую» к суждению «всякая форма энергии превращается в тепловую».

Абстрагирование (идеализация) - мысленное внесение определенных изменений в изучаемый объект в соответствии с целями исследования. В результате идеализации из рассмотрения могут быть исключены некоторые свойства, признаки объектов, которые не являются существенными для данного исследования. Пример такой идеализации в механике - материальная точка , т.е. точка, обладающая массой, но лишенная всяких размеров. Таким же абстрактным (идеальным) объектом является абсолютно твердое тело .

Индукция - процесс выведения общего положения из наблюдения ряда частных единичных фактов, т.е. познание от частного к общему. На практике чаще всего применяется неполная индукция, которая предполагает вывод о всех объектах множества на основании познания лишь части объектов. Неполная индукция, основанная на экспериментальных исследованиях и включающая теоретическое обоснование называется научной индукцией. Выводы такой индукции часто носят вероятностный характер. Это рискованный, но творческий метод. При строгой постановке эксперимента, логической последовательности и строгости выводов она способна давать достоверное заключение. По словам известного французского физика Луи де Бройля, научная индукция является истинным источником действительно научного прогресса.

Дедукци я - процесс аналитического рассуждения от общего к частному или менее общему. Она тесно связана с обобщением. Если исходные общие положения являются установленной научной истиной, то метом дедукции всегда будет получен истинный вывод. Особенно большое значение дедуктивный метод имеет в математике. Математики оперируют математическими абстракциями и строят свои рассуждения на общих положениях. Эти общие положения применяются к решению частных, конкретных задач.

Аналогия - вероятное, правдоподобное заключение о сходстве двух предметов или явлений в каком-либо признаке, на основании установленного их сходства в других признаках. Аналогия с простым позволяет понять более сложное. Так, по аналогии с искусственным отбором лучших пород домашних животных Ч.Дарвин открыл закон естественного отбора в животном и растительном мире.

Моделирование - воспроизведение свойств объекта познания на специально устроенном его аналоге - модели. Модели могут быть реальными (материальными), например, модели самолетов, макеты зданий. фотографии, протезы, куклы и т.п. и идеальными (абстрактными), создаваемые средствами языка (как естественного человеческого языка, так и специальных языков, например, языком математики. В этом случае мы имеем математическую модель . Обычно это система уравнений, описывающая взаимосвязи в изучаемой системе.

Исторический метод подразумевает воспроизведение истории изучаемого объекта во всей своей многогранности, с учетом всех деталей и случайностей.

Логический метод - это, по сути, логическое воспроизведение истории изучаемого объекта. При этом история эта освобождается от всего случайного, несущественного, т.е. это как бы тот же исторический метод, но освобожденный от его исторической формы .

Классификация - распределение тех или иных объектов по классам (отделам, разрядам) в зависимости от их общих признаков, фиксирующее закономерные связи между классами объектов в единой системе конкретной отрасли знания. Становление каждой науки связано с созданием классификаций изучаемых объектов, явлений.

Методы эмпирического познания

Наблюдения (презентация): мы можем наблюдать за деревьями, узнавать что некоторые из них сбрасывают листву, что бревно плывет в воде, что стрелка компаса указывает на север. При наблюдения мы не вмешиваемся в тот процесс, которые наблюдаем.

Накопив за время наблюдений определенные данные о явлениях, мы пытаемся выяснить, как эти явления протекают и почему. В ходе таких размышлений рождаются различные предположения или гипотезы . Для проверки гипотезы ставят специальные опыты – эксперименты . Эксперимент предполагает активное взаимодействие человека с наблюдаемым явлением. Во время экспериментов обычно производят измерения. Эксперимент предполагает наличие определенной цели и заранее продуманный план действий. Выдвигая ту или иную гипотезу, мы с помощью эксперимента можем подтвердить или опровергнуть нашу гипотезу.

Наблюдение - организованное, целенаправленное, фиксируемое восприятие явлений с целью их изучения в определённых условиях.

Гипотеза - это слово греческого происхождения, дословно переводится как "основание", "предположение". В современном понимании не доказанная теория или предположение. Гипотеза выдвигается на основе наблюдений или опытов.

Опыт - метод исследования некоторого явления в управляемых условиях. Отличается от наблюдения активным взаимодействием с изучаемым объектом

Иногда во время опытов по изучению известных природных явлений обнаруживается новое физическое явление. Так делается научное открытие .

Физическая величина – это характеристика, которая является общей для нескольких материальных объектов или явлений в качественном отношении, но может принимать индивидуальные значения для каждого из них.

Измерить физическую величину – значит сравнить её с однородной величиной, принятой за единицу.

Примеры физических величин – путь, время, масса, плотность, сила, температура, давление, напряжение, освещённость и т.п.

Физические величины бывают скалярные и векторные. Скалярные физические величины характеризуются только численным значением, тогда как векторные определяются и числом (модулем), и направлением. Скалярными физическими величинами являются время, температура, масса, векторны­ми - скорость, ускорение, сила.


Для научного познания большое значение имеет метод, т.е. способ организации изучения объекта. Метод – совокупность принципов, правил и приемов практической и теоретической деятельности. Метод вооружает человека системой принципов, требований, правил, руководствуясь которыми человек может достичь намеченной цели.

Правильный метод имеет огромное значение для познания природы. Учение о методе (методология) начинает развиваться в науке нового времени. Знаменитый английский философ Фрэнсис Бэкон сравнивал метод с фонарем, который освещает путнику дорогу. Ученый, не вооруженный правильным методом, - это путник, бредущий в темноте и ощупью отыскивающий себе дорогу. Рене Декарт, великий французский философ XVII века, тоже придавал большое значение разработке научного метода: «Под методом я разумею точные и простые правила, строгое соблюдение которых без лишней траты умственных сил, но постепенно и непрерывно увеличивая знания, способствует тому, что ум достигает истинного знания всего, что ему доступно». Именно в этот период бурного развития естествознания складываются две противоположные методологические концепции: эмпиризм и рационализм.

Эмпиризм – направление в методологии, признающее опыт источником достоверного знания, сводящее содержание знания к описанию этого опыта.

Рационализм – направление в методологии, согласно которому достоверное знание дает только разум, логическое мышление.

Методы научного познания можно классифицировать по степени общности на универсальные (философские) и научные, которые в свою очередь, делятся на общенаучные и частнонаучные.

Частнонаучные методы применяются в рамках одной науки или области научного исследования, например: метод спектрального анализа, метод цветных реакций в химии, методы электромагнетизма в физике и др.

Общенаучные методы имеют широкий междисциплинарный спектр применения и могут применяться в любой науке, например: моделирование, эксперимент, логические методы и др.

Одной из важнейших особенностей научного познания является наличие двух уровней: эмпирического и теоретического, которые отличаются используемыми методами. На эмпирической (опытной) стадии используются главным образом методы, связанные с чувственно-наглядными приемами познания, к которым относят наблюдение, измерение, эксперимент.

Наблюдение является первоначальным источником информации и связано с описанием объекта познания. Целенаправленность, планомерность, активность – характерные требования для научного наблюдения. По способу проведения наблюдения бывают непосредственными и опосредованными. При непосредственных наблюдениях свойства объекта воспринимаются органами чувств человека. Такие наблюдения всегда играли большую роль в исследовании науки. Так, например, наблюдение положения планет и звезд на небе, проводившиеся более двадцати лет Тихо Браге с необыкновенной для невооруженного глаза точностью, способствовали открытию Кеплером его знаменитых законов. Однако чаще всего научное наблюдение бывает опосредованным, т.е. проводится с помощью технических средств. Изобретение Галилеем в 1608 году оптического телескопа расширило возможности астрономических наблюдений, а создание в ХХ веке рентгеновских телескопов и вывод их в космос на борту орбитальной станции позволило проводить наблюдения за такими космическими объектами, как квазары, пульсары, которые невозможно было бы наблюдать никаким другим способом.

Развитие современного естествознания связано с повышением роли так называемых косвенных наблюдений. Так, например, объекты, изучаемые ядерной физикой, не могут наблюдаться ни непосредственно, с помощью органов чувств человека, ни опосредованно, с помощью самых совершенных приборов. То, что ученые наблюдают в процессе эмпирических исследований в атомной физике, - это не сами микрообъекты, а только результаты их воздействия на определенные технические средства. Например, регистрацию взаимодействий элементарных частиц фиксируют только косвенно с помощью счетчиков (газозарядных, полупроводниковых и т.п.) или трековых приборов (камера Вильсона, пузырьковая камера и др.) Расшифровывая «картинки» взаимодействий, исследователи получают сведения о частицах и их свойствах.

Эксперимент – более сложный метод эмпирического познания, он предполагает активное, целенаправленное и строго контролируемое воздействие исследователя на изучаемый объект для выявления его определенных сторон и свойств. Преимущества эксперимента: во-первых, позволяет изучать объект в «чистом виде», т.е. устранять всякие побочные факторы, затрудняющие исследование. Во-вторых, позволяет изучать объект в некоторых искусственных, например, экстремальных, условиях, когда удается обнаружить удивительные свойства объектов, тем самым глубже постигать их сущность. Очень интересными и перспективными в этом плане являются космические эксперименты, позволяющие изучать объекты в таких особых условиях, как невесомость, глубокий вакуум, которые недостижимы в земных лабораториях. В-третьих, изучая какой-либо процесс, экспериментатор может вмешиваться в него, активно влиять на его протекание. В-четвертых, многократность, повторяемость эксперимента, который может быть повторен столько раз, сколько необходимо для получения достоверных результатов.

В зависимости от характера задач эксперименты делятся на исследовательские и проверочные. Исследовательские эксперименты позволяют делать открытия, обнаруживать у объекта новые, ранее неизвестные свойства. Так, например, эксперименты в лаборатории Э. Резерфорда показали странное поведение альфа-частиц при бомбардировке ими золотой фольги: большинство частиц проходило сквозь фольгу, небольшое количество частиц отклонялось и рассеивалось, а некоторые частицы не просто отклонялись, а отскакивали обратно, как мяч от сетки. Такая картина, согласно проведенным расчетам, получалась из-за того, что вся масса атома сосредоточена в ядре, занимающем ничтожную часть объема атома, и отскакивали обратно альфа-частицы, соударявшиеся с ядром. Так исследовательский эксперимент Резерфорда привел к обнаружению ядра атома, и тем самым к рождению ядерной физики.

Проверочные эксперименты служат подтверждению некоторых теоретических построений. Например, существование целого ряда элементарных частиц (позитрон, нейтрино и др.) было вначале предсказано теоретически.

Измерение – процесс, состоящий в определении количественных значений свойств или сторон изучаемого объекта с помощью специальных технических устройств. Результат измерения получается в виде некоторого числа единиц измерения. Единица измерения – это эталон, с которым сравнивается измеряемый объект. Единицы измерения подразделяются на основные, используемые в качестве базисных при построении системы единиц, и производные, выводимые из базисных с помощью некоторых математических соотношений. Методика построения системы единиц была впервые предложена в 1832 г. Карлом Гауссом. В предложенной системе в основу положены три произвольные единицы: длины (миллиметр), массы (миллиграмм), времени (секунда). Все остальные единицы можно было получить из этих трех. В дальнейшем с развитием науки и техники появились и другие системы единиц физических величин, построенных по принципу Гаусса. Кроме того, в физике появились так называемые естественные системы единиц, в которых основные единицы определялись из законов природы. Примером служит система единиц, предложенная Максом Планком, в основу которой были положены «мировые постоянные»: скорость света в вакууме, постоянная тяготения, постоянная Больцмана и постоянная Планка. Исходя из них (и приравняв их к «1»),Планк получил ряд производных единиц: длины, массы, времени, температуры. В настоящее время в естествознании действует преимущественно Международная система единиц (СИ), принятая в 1960 году Генеральной конференцией по метрам и весам. Данная система является наиболее совершенной и универсальной из всех существовавших до настоящего времени и охватывает физические величины механики, термодинамики, электродинамики и оптики, которые связаны между собой физическими законами.

На теоретической стадии прибегают к абстракциям и образованию понятий, строят гипотезы и теории, открывают законы науки. К числу общенаучных теоретических методов относят сравнение, абстрагирование, идеализацию, анализ, синтез, дедукцию, индукцию, аналогию, обобщение, восхождение от абстрактного к конкретному. Главная их особенность в том, что это логические приемы, т.е. операции с мыслями, знаниями.

Сравнение – мысленная операция выявления сходства и различия изучаемых предметов. Частным случаем сравнения является аналогия: вывод о наличии того или иного признака у исследуемого объекта делается на основе обнаружения у него целого ряда сходных признаков с другим объектом.

Абстрагирование – мысленное выделение признаков предмета и рассмотрение их отдельно от самого предмета и других его признаков. Идеализация – мысленное конструирование ситуации (объекта, явления), которой приписываются свойства или отношения в «предельном» случае. Результатом такого конструирования являются идеализированные объекты, такие как: точка, материальная точка, абсолютно черное тело, абсолютно твердое тело, идеальный газ, несжимаемая жидкость и др. Благодаря идеализации процессы рассматриваются в «чистом виде», что позволяет выявить законы, по которым эти процессы протекают. Например: допустим, что некто идет по дорожке с багажной тележкой и внезапно перестает ее толкать. Тележка будет двигаться еще некоторое время, пройдя небольшое расстояние, а затем остановится. Можно придумать множество способов удлинения пути, проходимого тележкой после толкания. Однако устранить все внешние воздействия на длину пути невозможно. Но, рассматривая движение тела в «предельном» случае, мы можем заключить, что если совсем устранить внешние воздействия на движущееся тело, то оно будет двигаться бесконечно и при этом равномерно и прямолинейно. Такой вывод был сделан Галилеем и получил название «принцип инерции», а наиболее четко сформулирован Ньютоном в виде закона инерции.

С идеализацией связан такой специфический метод как мысленный эксперимент, который предполагает оперирование идеализированным объектом, замещающим в абстракции объект реальный.

Анализ – метод исследования, состоящий в разделении целого на части, с целью их самостоятельного изучения.

Синтез – соединение ранее выделенных частей в целое с целью выявления их взаимосвязи и взаимодействия. Связь анализа и синтеза вытекает из самой природы объектов, представляющих единство целого и его частей. Анализ и синтез обусловливают друг друга.

Индукция – логический метод, основанный на движении мысли от единичного или частного к общему. В индуктивном умозаключении истинность посылок (фактов) не гарантирует истинности выводимого заключения, оно будет лишь вероятностным. Метод научной индукции основан на выяснении причинной (каузальной) связи исследуемых явлений. Каузальность – такое внутреннее отношение между двумя явлениями, когда одно из них порождает, вызывает другое. Это отношение содержит: явление, которое претендует на то, чтобы быть причиной; явление, которому мы приписываем характер действия (следствия), и обстоятельства, в которых происходит взаимодействие причины и действия.

Для причинной связи характерно:

· причина постоянно предшествует своему действию во времени; это значит, что причину данного явления следует искать среди обстоятельств, предшествующих ему во времени, учитывая факт некоторого сосуществования во времени причины и следствия.

· Причина порождает действие, обусловливает его появление; это значит, что одного предшествования во времени недостаточно для каузальной связи, повод – условие, предшествующее возникновению явления, но не порождающее его.

· Связь причины и следствия необходима; это означает, что можно доказать отсутствие причинной связи в случае, когда действие наступает, а предполагаемой причины не наблюдалось.

· Связь причины и действия всеобща; это значит, что каждое явление имеет причину, поэтому, как правило, наличие причинной связи нельзя установить на основании единичного явления, необходимо изучение определенного множества явлений, в рамках которого систематически проявляется искомая причинная связь.

· С изменением интенсивности причины изменяется и интенсивность действия. Это наблюдается тогда, когда причина и следствие определенное время сосуществуют.

На этих свойствах основаны методы открытия причинных связей, разработанные Ф. Бэконом (1561- 1626), а затем усовершенствованные английским философом, логиком, экономистом Джоном Стюартом Миллем (1806-1873). Эти методы получили название методов научной индукции. Всего их пять:

1. Метод единственного сходства: если какое-то обстоятельство постоянно предшествует наступлению исследуемого явления в то время, как иные обстоятельства изменяются, то это условие, вероятно, и есть причина данного явления.

2. Метод единственного различия: если какое-то условие имеет место, когда наступает исследуемое явление, и отсутствует, когда этого явления нет, а все остальные условия остаются неизменными, то, вероятно, данное условие представляет собой причину исследуемого явления.

3. Соединенный метод сходства и различия: если два и большее число случаев, когда наступает данное явление, сходны только в одном условии, в то время как два или более случаев, когда данное явление отсутствует, отличаются от первых только тем, что отсутствует это условие, то это условие, вероятно, и есть причина наблюдаемого явления.

4. Метод сопутствующих изменений: если с изменением условий в той же степени меняется некоторое явление, а остальные обстоятельства остаются неизменными, то, вероятно, данное условие является причиной наблюдаемого явления.

5. Метод остатков: если сложные условия производят сложное действие и известно, что часть условий вызывает определенную часть этого действия, то остающаяся часть условий вызывает остающуюся часть действия.

Дедукция – это движение мысли от общих положений к частным или единичным. Дедукция - общенаучный метод, но особенно большое значение дедуктивный метод имеет в математике. В науке Нового времени разрабатывал и пропагандировал дедуктивно-аксиоматический метод познания выдающийся философ и математик Р. Декарт. Его методология была прямой противоположностью эмпирическому индуктивизму Бэкона.

Из общего положения, что все металлы обладают электропроводностью, можно сделать вывод об электропроводности конкретной медной проволоки, зная, что медь – металл. Если исходные общие положения являются истинными, то дедукция всегда будет давать истинный вывод.

Наиболее распространенным видом дедукции является простой категорический силлогизм, в котором устанавливается отношение между двумя крайними терминами S и P на основании их отношения к среднему термину M. Например:

Все металлы (M) проводят электрический ток (P).

Важное место в теории дедуктивных рассуждений занимает также условно- категорическое умозаключение.

Утверждающий модус (modus ponens):

Если у человека повышена температура (a), он болен (b). У этого человека повышена температура (a). Значит, он болен (b).

Как видно, мысль здесь движется от утверждения основания к утверждению следствия: (a -› b, a) -› b.

Отрицающий модус (modus tollens):

Если у человека повышена температура (a), он болен (b). Этот человек не болен (не-b). Значит, у него нет повышенной температуры (не-a).

Как видно, здесь мысль движется от отрицания следствия к отрицанию основания: (a -› b, не-b) -› не-a.

Дедуктивная логика играет важнейшую роль в обосновании научного знания, доказательстве теоретических положений.

Аналогия и моделирование. Оба эти метода основаны на выявлении сходства в предметах или отношениях между предметами. Модель – искусственно созданное человеком устройство, которое в определенном отношении воспроизводит реально существующие предметы, являющиеся объектом научного исследования. Моделирование основано на абстрагировании сходных признаков у разных предметов и установлении между определенного соотношения между ними. С помощью моделирования можно изучать такие свойства и отношения исследуемых явлений, которые могут быть недоступны непосредственному изучению.

В хорошо известной планетарной модели атома его строение уподобляется строению Солнечной системы. Вокруг массивного ядра на разном расстоянии от него движутся по замкнутым траекториям легкие электроны, подобно тому, как вокруг солнца обращаются планеты. В этой аналогии устанавливается, как и обычно, сходство, но не самих предметов, а отношений между ними. Атомное ядро не похоже на Солнце, а электроны – на планеты. Но отношение между ядром и электронами во многом подобно отношению между Солнцем и планетами.

Аналогия между живыми организмами и техническими устройствами лежит в основе бионики. Это направление кибернетики изучает структуры и жизнедеятельность организмов; открытые закономерности и обнаруженные свойства используются затем для решения инженерных задач и построения технических систем, приближающихся по своим характеристикам к живым системам.

Таким образом, аналогия не только позволяет объяснить многие явления и сделать неожиданные и важные открытия, она приводит даже к созданию новых научных направлений или коренному преобразованию старых.

Виды моделирования.

Мысленное (идеальное) моделирование – построение различных мысленных представлений в форме воображаемых моделей. Например, в идеальной модели электромагнитного поля, созданной Максвеллом, силовые линии представлялись в виде трубок различного сечения, по которым течет воображаемая жидкость, не обладающая инерцией и сжимаемостью.

Физическое моделирование – воспроизведение в модели процессов, свойственных оригиналу, на основе их физического подобия. Оно широко используется для разработки и экспериментального изучения различных сооружений (плотин электростанций и т.п.), машин (аэродинамические качества самолетов, например, исследуются на их моделях, обдуваемых воздушным потоком в аэродинамической трубе), для изучения эффективных и безопасных способов ведения горных работ и т.д.

Символическое (знаковое) моделирование связано с представлением в качестве моделей разнообразных схем, графиков, чертежей, формул. Особой разновидностью символического моделирования является математическое моделирование. Символический язык математики позволяет выражать свойства, стороны, отношения объектов самой различной природы. Взаимосвязи между различными величинами, описывающими функционирование изучаемого объекта, выражается соответствующими уравнениями.

Численное моделирование на ЭВМ основывается на математической модели изучаемого объекта и применяется в случаях больших объемов вычислений, необходимых для исследования данной модели, для чего создается специальная программа. В этом случае в качестве модели выступает алгоритм (программа для ЭВМ) функционирования изучаемого объекта.



Научное знание представляет собой систему, имеющую несколько уровней познания, различающихся по целому ряду параметров. В зависимости от предмета, характера, типа, метода и способа получаемого знания выделяют эмпирический и теоретический уровни познания. Каждый из них выполняет определенные функции и располагает специфическими методами исследования. Уровням соответствуют взаимосвязанные, но в то же время специфические виды познавательной деятельности: эмпирическое и теоретическое исследования.

Эмпирические знания – результат непосредственного взаимодействия исследователя с реальностью в наблюдении или эксперименте. На эмпирическом уровне происходит не только накопление фактов, но и их первичная систематизация, классификация, что позволяет выявлять эмпирические правила, принципы и законы, которые преобразуются в наблюдаемые явления. На этом уровне исследуемый объект отражается преимущественно во внешних связях и проявлениях. Основными формами научного познания являются факты, проблемы, гипотезы и теории.Основным критерием истинности гипотезы является практика в разных формах.

Научная теория – обобщенная система знаний, дающая целостное отображение закономерных и существенных связей в определенной области объективной реальности. Основная задача теории заключается в том, чтобы описать, систематизировать и объяснить все множество эмпирических фактов. Теории классифицируют как описательные, научные и дедуктивные. В описательных теориях исследователи формулируют общие закономерности на основе эмпирических данных.

Общие методы познания касаются любой дисциплины и дают возможность соединить все этапы процесса познания. Эти методы используются в любой области исследования и позволяют выявлять связи и признаки исследуемых объектов..Частные методы научного познания – это методы, применяющиеся только в отдельной отрасли науки. Различные методы естествознания (физики, химии, биологии, экологии и т. д.) являются частными по отношению к общему диалектическому методу познания.

Среди особенных эмпирических методов познания выделяют наблюдение, измерение и эксперимент.

1)Наблюдение представляет собой целенаправленный процесс восприятия предметов действительности, чувственное отражение объектов и явлений, в ходе которого человек получает первичную информацию об окружающем мире. Поэтому исследование чаще всего начинается с наблюдения, и лишь потом исследователи переходят к другим методам.

2)Измерение – это определение количественных значений (характеристик) изучаемых сторон или свойств объекта с помощью специальных технических устройств.

3)Эксперимент – более сложный метод эмпирического познания по сравнению с наблюдением. Он представляет собой целенаправленное и строго контролируемое воздействие исследователя на интересующий объект или явление для изучения его различных сторон, связей и отношений. В ходе экспериментального исследования ученый вмешивается в естественный ход процессов, преобразует объект исследования.

Среди особенных теоретических методов научного познания выделяют процедуры абстрагирования и идеализации. В процессах абстрагирования и идеализации формируются понятия и термины, используемые во всех теориях.

1)Абстрагирование – мысленное отвлечение от всех свойств, связей и отношений изучаемого объекта, которые считают несущественными. Таковы модели точки, прямой линии, окружности, плоскости.

2)Идеализация представляет операцию мысленного выделения какого-то одного важного для данной теории свойства или отношения, мысленного конструирования объекта, наделенного этим свойством (отношением).

Среди особенных универсальных методов исследований выделяют анализ, синтез, сравнение, классификацию, аналогию, моделирование. 1)Анализ – одна из начальных стадий исследования, когда от цельного описания объекта переходят к его строению, составу, признакам и свойствам.

2)Синтез – метод научного познания, в основе которого лежит объединение выделенных анализом элементов. Синтез выступает не как метод конструирования целого, а как метод представления целого в форме единственных знаний, полученных с помощью анализа.

3)Классификация – метод научного познания, который объединяет в один класс объекты, максимально сходные друг с другом в существенных признаках. Как правило, классификации выражаются в виде текстов на естественных языках, схем и таблиц.

4)Аналогия – метод познания, при котором происходит перенос знания, полученного при рассмотрении какого-либо объекта, на другой, менее изученный, но схожий с первым по каким-то существенным свойствам.

В современных исследованиях используют различные виды моделирования: предметное,мысленное,символическое,компьютерное.

Предметное моделирование представляет собой использование моделей, воспроизводящих определенные характеристики объекта.

Мысленное моделирование представляет собой использование различных мысленных представлений в форме воображаемых моделей.

Символическое моделирование использует в качестве моделей чертежи, схемы, формулы. Оно предполагает формирование систем уравнений, которые описывают исследуемое природное явление, и их решение при различных условиях.

Компьютерное моделирование получило широкое распространение в последнее время.

Разнообразие методов научного познания создает трудности в их применении и понимании их роли. Эти проблемы решаются особой областью знания – методологией. Основной задачей методологии является изучение происхождения, сущности, эффективности, развития методов познания.

Критерии научного знания. Лженаука

Научное знание и его критерии

Для естествознания, как и для философии в целом, большое значение имеет такой критерий, как знание. В словаре русского языка Ожегова С. И. даются два определения понятия знания:

1) постижение действительности сознанием;

2) совокупность сведений, познаний в какой-нибудь области. Давайте определимся, что такое знание в философском смысле.

Знание – это многоаспектный проверенный практикой результат, который был подтвержден логическим путем, процесс познания окружающего мира. Многоаспектность философского знания, как уже было сказано выше, вытекает из того, что философия состоит из множества наук.

Можно назвать несколько критериев научного знания:

1) систематизированность знания;

2) непротиворечивость знания;

3) обоснованность знания.

Систематизированность научного знания означает, что весь накопленный опыт человечество приводит (или должно приводить) к определенной строгой системе.

Непротиворечивость научного знания означает, что знания в различных областях науки дополняют друг друга, а не исключают. Этот критерий непосредственно вытекает из предыдущего.

Обоснованность научного знания. Научное знание может подтверждаться путем многократного повторения одного и того же действия (т. е. эмпирически).

Также,критериями научного знания могут быть:

Рациональность(логическое мышление понятиям)

Воспроизводимость(метод ясно описан)

Наличие отработанного механизма получения знаний

Постоянное развитие (осознание ограниченности теории и моделей)

Лженаука(псевдонаука)- это деятельность или учение, осознанно или неосознанно имитирующие науку, но по сути таковыми не являющиеся.

Классификация

Отнесение каких-либо отраслей человеческой деятельности к псевдонауке происходит постепенно, по мере развития человечества и отхода от устаревших воззрений.

В первую группу входят некоторые эмпирические учения прошлого, которые достигли определённых результатов, но на сегодняшний момент являются не более чем элементами оккультизма, например:

Алхимия дала начало химии и может рассматриваться как исторический этап её развития.

Астрология в некоторых культурах на определенных этапах переплеталась с астрономией.

Нумерология, возникшая в период бурного расцвета философии, математики и астрологии, дала начало некоторым идеям теории чисел.

Ко второй группе относят «науки» и «теории», которые появились как некорректные попытки основать новую, альтернативную науку или теорию, например:

Информациология

Суперкритическая историография, в частности «новая хронология»

Новое учение о языке или яфетическая теория

Волновая генетика.

Третьи являются оспариваемыми попытками связать современные научные теории с религиозными или мистическими учениями, например:

Научный креационизм, разумный замысел

Парапсихология (телепатия, телекинез и т. п., психотронное оружие)

Телегония

«Научный подход» в Каббале

Четвёртые являются разного рода устаревшими или маргинальными учениями.К ним относятся, например:

Графология

Валеология

Дианетика

Соционика

Френология

Гомеопатия.

В этих учениях присутствуют как элементы, которые могут быть приняты доказательной наукой, так и положения, которые принимаются их сторонниками без доказательств (например, потенцирование и «перенос информации» в некоторых гомеопатических школах).

В пятых, к псевдонауке следует отнести попытки некорректного использования известных научных подходов в качестве бренда или модного атрибута названия теории, статьи или работы, например:

Синергетика

Нанотехнология

Характерные черты лженауки:

Некритичность

Использование неточных, часто обыденных и размытых понятий

Грубые ошибки в постановке опытов- отсутствие контроля и воспроизводимости

Сознательное искажение и подстановка фактов

Отсутствие системности- связи с остальным научным знанием, непротиворечивости с ним и внутренней. Покушение на авторитеты

БОЛЬШИЕ БУКВЫ и много пафоса

Популярные лженаучные теории:

Память воды

Торсионные поля

Астрология

Волновая генетика

Научный креационизм

«Новая хронология» Фоменко

Уфология

9.Сравните естественнонаучные и гуманитарные дисциплины . Укажите черты сходства и различия

Естественные науки - разделы науки, отвечающие за изучение внешних по отношению к человеку природных (естественных - от «естество», природа) явлений. Происхождение естественных наук связано с применением философского натурализма к научным исследованиям.

Направления естественных наук:

Базовые науки:

Астрономия

Биология

География

Геология

Существуют предложения расширить список естественных наук, например:

Естественная информатика

Основа естественных наук:

Все современные естественные науки, так или иначе, используют математическое или компьютерное моделирование для описания рассматриваемых явлений.

Таким образом, естественные науки предполагают точное формульное определение закономерностей, описывающих рассматриваемые природные явления; а также формульную запись новых гипотез и теорий.

В результате, обеспечиваемые естественными науками описания содержат численные значения. Кроме того, благодаря точным математическим выкладкам любая гипотеза может быть проверена и при необходимости скорректирована.

Гуманитарные науки - дисциплины, изучающие человека в сфере его духовной, умственной, нравственной, культурной и общественной деятельности. По объекту, предмету и методологии изучения часто отождествляются или пересекаются с общественными науками, противопоставляясь при этом естественным и точным наукам на основании критериев предмета и метода. Если в других науках важна конкретность, то в гуманитарных, если и важна такая точность, например описания исторического события, то и важна многогранность и даже безграничность такого произведения (описания), так, чтобы, по возможности, каждый человек находил в нём нечто своё, получая при этом определённое эстетическое удовлетворение.

Направления:

Журналистика

Искусствоведение

Культурология

Лингвистика

Литературоведение

Менеджмент

Музееведение

Науковедение

Педагогика

Этнография

Материя и её свойства

Материя- это бесконечное множество всех участвующих в мире объектов и систем, включает в себя не только наблюдаемые объекты и тела природы, но и те которые не даны человеку и его ощущениях.

Вещество- основной вид материи, обладающий массой покоя.

Физическое поле- особый вид материи, обеспечивающий физическое взаимодействие материальных объектов и их систем(электромагнитное м гравитационные поля, поле ядерных сил, волновые поля различных частиц).

Физический вакуум- низшее энергетическое состояние квантового поля.

Основные виды материи:

Вещество

Адронное вещество - основную массу этого типа вещества составляютэлементарные частицы адроны

Барионное вещество (барионная материя) - основной (по массе) компонент - барионы

Вещество в классическом понимании. Состоит из атомов, содержащихпротоны, нейтроны и электроны. Эта форма материи доминирует в Солнечной системе и в ближайших звёздных системах

Антивещество - состоит из антиатомов, содержащих антипротоны, антинейтроны и позитроны

Нейтронное вещество - состоит преимущественно из нейтронов и лишено атомного строения. Основной компонент нейтронных звёзд, существенно более плотный, чем обычное вещество, но менее плотный, чем кварк-глюонная плазма

Другие виды веществ, имеющих атомоподобное строение (например, вещество, образованное мезоатомами с мюонами)

Атрибуты и свойства материи:

Атрибутами материи, всеобщими формами её бытия являются движение, пространство и время, которые не существуют вне материи. Точно так же не может быть и материальных объектов, которые не обладали бы пространственно-временными свойствами.

Фридрих Энгельс выделил пять форм движения материи:

физическая;

химическая;

биологическая;

социальная;

механическая.

Универсальными свойствами материи являются:

несотворимость и неуничтожимость

вечность существования во времени и бесконечность в пространстве

материи всегда присущи движение и изменение, саморазвитие, превращение одних состояний в другие

детерминированность всех явлений

причинность - зависимость явлений и предметов от структурных связей в материальных системах и внешних воздействий, от порождающих их причин и условий

отражение - проявляется во всех процессах, но зависит от структуры взаимодействующих систем и характера внешних воздействий. Историческое развитие свойства отражения приводит к появлению высшей его формы - абстрактного мышления

Универсальные законы существования и развития материи:

Закон единства и борьбы противоположностей

Закон перехода количественных изменений в качественные

Закон отрицания отрицания

Лучшие статьи по теме